• Title/Summary/Keyword: Charge-discharge density

Search Result 184, Processing Time 0.024 seconds

The Electrochemical Characteristics of Electrochemically Prepared Poly(p-phenylene) and PPP-based Carbon (전해중합법으로 제조한 Poly(p-phenylene)과 PPP-based Carbon의 전기 화학적 특성)

  • 김주승;조재철;정운조;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.70-73
    • /
    • 1997
  • The purpose of this study is to research and develop poly(p-phenylene)(PPP)-based carbon obtained by pyrolyzing electrochemically prepared PPP as a anode of rocking chair batteries. Disordered carbon materials were obtains by heat-treating of PPP films in a nitrogen atmosphere at 4$0^{\circ}C$ to 110$0^{\circ}C$ for 1 hour. The carbon prepared by heat treatment showed a broad x-ray diffraction peak having characteristics of disordered carbon. Carbon electrodes were charged and discharged at a current density of 0.1㎃/$\textrm{cm}^2$. First discharge capacity of 267㎃h/g and 34% of charge/discharge efficiency were observed from PPP-based carbon prepared at $700^{\circ}C$.

  • PDF

An ionic liquid incorporated gel polymer electrolyte for double layer capacitors

  • Perera, Kumudu S.;Prasadini, K.W.;Vidanapathirana, Kamal P.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Energy storage devices have received a keen interest throughout the world due to high power consumption. A large number of research activities are being conducted on electrochemical double layer capacitors (EDLCs) because of their high power density and higher energy density. In the present study, an EDLC was fabricated using natural graphite based electrodes and ionic liquid (IL) based gel polymer electrolyte (GPE). The IL based GPE was prepared using the IL, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) with the polymer poly(vinyl chloride) (PVC) and the salt magnesium trifluoromethanesulfonate (Mg(CF3SO3)2 - MgTF). GPE was characterized by electrochemical impedance spectroscopy (EIS), DC polarization test, linear sweep voltammetry (LSV) test and cyclic voltammetry (CV) test. The maximum room temperature conductivity of the sample was 1.64 × 10-4 Scm-1. The electrolyte was purely an ionic conductor and the anionic contribution was prominent. Fabricated EDLC was characterized by EIS, CV and galvanostatic charge discharge (GCD) tests. CV test of the EDLC exhibits a single electrode specific capacitance of 1.44 Fg-1 initially and GCD test gives 0.83 Fg-1 as initial single electrode specific discharge capacitance. Moreover, a good stability was observed for prolonged cycling and the device can be used for applications with further modifications.

The electrochemical Characteristics on the Anode Material of Lithium Ion Secondary Batteries with Discharge Voltage (방전전압에 따른 리튬 이온 2차전지용 음극물질의 전기화학적 특성)

  • Park, Jong-Gwang;Han, Tae-Hui;Jeong, Dong-Cheol;Im, Seong-Hun;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.328-334
    • /
    • 2000
  • A lithium ion secondary battery using carbon as a negative electrode has been developed. Further improvements to increase the cell capacity are expected by modifying the structure of the carbonaceous material. There are hopes for the development of large capacity lithium ion secondary batteries with long cycle, high energy density, high power density, and high energy efficiency. In the present paper, needle cokes from petroleum were examined as an anode of lithium ion secondary battery. Petroleum cokes, MCL(Molten Caustic Leaching) treated in Korea Institute Energy Research, were carbonized at various temperatures of 0, 500, 700, $19700^{\circ}C$ at heating rate of $2^{\circ}C$/min for lh. The electrolyte was used lM liPF6 EC/DEC (1:1). The voltage range of charge & discharge was 0.0V(0.05V) ~ 2.0V. The treated petroleum coke at $700^{\circ}C$ had an initial capacity over 560mAh.g which beyond the theoretical maximum capacity, 372mAh/g for LiC6. This phenomena suggests that carbon materials with disordered structure had higher cell capacity than that the graphitic carbon materials.

  • PDF

High Energy Density Dielectric Ceramics Capacitors by Aerosol Deposition (상온 분사 공정을 이용하여 제조한 고에너지 밀도 세라믹 유전체 커패시터)

  • Hyunseok Song;Geon Lee;Jiwon Ye;Ji Yun Jung;Dae-Yong Jeong;Jungho Ryu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.119-132
    • /
    • 2024
  • Dielectric ceramic capacitors present high output power density due to the fast energy charge and discharge nature of dielectric polarization. By forming dense ceramic films with nano-grains through the Aerosol Deposition (AD) process, dielectric ceramic capacitors can have high dielectric breakdown strength, high energy storage density, and leading to high power density. Dielectric capacitors fabricated by AD process are expected to meet the increasing demand in applications that require not only high energy density but also high power output in a short time. This article reviews the recent progress on the dielectric ceramic capacitors with improved energy storage properties through AD process, including energy storage capacitors based on both leadbased and lead-free dielectric ceramics.

Characterization of manganese oxide supercapacitors using carbon cloth (Carbon Cloth을 이용한 이산화망간 슈퍼커패시터 특성 연구)

  • Lee, Seung Jin;Kim, Chihoon;Ji, Taeksoo
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1199-1205
    • /
    • 2017
  • Global energy consumption is rapidly increasing yearly due to drastic industrial advances, requiring the development of new energy storage devices. For this reason, supercapacitors with fast charge-discharge, long life cycle and high power density is getting attention, and have been considered as one of the potential energy storage systems. In this research, we developed a supercapacitor that consists of amorphous manganese oxide($MnO_2$) electrodes deposited onto carbon cloth substrates using the hydrothermal method. The Fe-doped amorphous $MnO_2$ samples were characterized by X-ray diffraction(XRD), Energy Dispersive X-ray spectroscopy(EDX), as well as scanning electron microscopy(SEM). The electrochemical analysis of the prepared samples were performed using cyclic voltammetry and galvanostatic charge-discharge measurements in 1M $Na_2SO_4$ electrolyte. The test results demonstrate that the supercapacitor based on the Fe-doped amorphous $MnO_2$ electrodes has a specific capacitance as high as 163F/g at 1A/g current density, and good cycling stability of 87.34% capacitance retention up to 1000 cycles.

Electrochemical Simulation for Limited-Discharge Current Prediction of Li-ion Secondary Cell Using High-Rate Discharge (고율 방전용 리튬 전지의 한계 방전 전류 예측을 위한 전기화학 시뮬레이션)

  • Kim, Simon;Lee, Young Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.807-812
    • /
    • 2015
  • Li-ion batteries are energy sources that are widely used in applications such as notebooks, cellular phones, power tools, and vehicles. They are devices in which stored chemical energy is changed to electrical energy by electrochemical reactions. They have a high energy density, small size, and are lightweight. In particular, power tools and vehicles require high charge/discharge rates. Therefore, in this paper, we perform electrochemical simulations using a commercial finite-element analysis program to determine the high discharge-rate characteristics of Li-ion cells. In addition, by performing high discharge-rate simulations, we found that the limited discharge current was 63 A. Based on the results obtained, we investigate the behavior of Li-ion cells with a high rate of discharge.

The optimization of output coupler reflectivity of high repetitive pulsed Nd:YAG laser system adopted 3-mesh parallel sequential charge and discharge method (3단 병렬 충.방전 방식을 적용한 고반복 펄스형 Nd:YAG 레이저 출력거울 반사율의 최적화)

  • 김휘영;홍수열;김동수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.369-376
    • /
    • 2001
  • The optimization of resonator and laser power supply has been considered to be significant for improving the efficiency of a pulsed Nd:YAG laser system. We have proposed a new method of 3-mesh parallel sequential charge and discharge circuit as a laser power supply; more compact than conventional power supply, competitive in price, easy to control the laser power density according to various material processing, and equipped with the optimum reflectivity of output coupler. In this study, we could find that the maximum laser output was obtained by using 85% of reflectivity in the case of 50[W]-class. In addition using the power supply of new method, it's possible to charge each capacitor bank with a higher energy within the given charging time adopted a new method mentioned above; namely, we can allow each capacitor to have much more charging time and storage energy. So, higher laser output was obtained than conventional power supply.

  • PDF

Preparation and Characteristics of Li/$V_6O_{13}$ Secondary Battery (Li/$V_6O_{13}$ 2차전지의 제조 및 특성)

  • Moon, S.I.;Jeong, E.D.;Doh, C.H.;Yun, M.S.;Yum, D.H.;Chung, M.Y.;Park, C.J.;Youn, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.136-140
    • /
    • 1992
  • The purpose of this research is to develop the lithium secondary battery. This paper describes the preparation, electrochemical properties of nontstoichiometric(NS)-$V_6O_{13}$ and characteristics of Li/$V_6O_{13}$ secondary battery. NS-$V_6O_{13}$ was prepared by thermal decomposition of $NH_4VO_3$ under Ar stream of 140ml/min~180ml/min flow rate. And then, this NS-$V_6O_{13}$ was used for cathode active material. Cathode sheet was prepared by compressing the composite of NS-$V_6O_{13}$, acetylene black(A.B) and teflon emulsion (T.E). Characteristics of the test cell are summarised as follows. Oxidation capacity of NS-$V_6O_{13}$ was about 20% less than its reduction capacity. A part of NS-$V_6O_{13}$ cathode active material showed irreversible reaction in early charge-discharge cycle. This phenomena seems to be caused by irreversible incoporation/discoporation of lithium cation to/from NS-$V_6O_{13}$ host. Discharge characteristics curve of Li/$V_6O_{13}$ cell showed 4 potential plateaus. Charge-discharge capacity was declined in the beginning of cycling and slowly increased in company with increasing of coulombic efficiency. Energy density per weight of $V_6O_{13}$ cathode material was as high as 522Wh/kg~765Wh/kg.

  • PDF

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Numerical Study of Particle Collection and Entrainment in Electrostatic Precipitator (집진기내 입자 포집과 비산 문제에 대한 수치적 연구)

  • Kim, Ju-Hyeon;Kweon, Soon-Cheol;Kwon, Ki-Hwan;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • A numerical simulation for particle collection efficiency in a wire-plate electrostatic precipitator (ESP) has been performed. Method of characteristics and finite differencing method (MOC-FDM) were employed to obtain electric field and space charge density, and lattice boltzmann method (LBM) was used to predict the Electrohydrodynamic (EHD) flow according to the ion convection. Large eddy simulation (LES) was considered for turbulent flow and particle simulation was performed by discrete element method (DEM) which considered field charging, electric force, drag force and wall-collision. One way coupling from FDM to LBM was used with small and low density particle assumption. When the charged particle collided with the collecting plate, particle-wall collision was calculated for re-entertainment effect and the effect of gravity force was considered.