• 제목/요약/키워드: Charge-discharge density

검색결과 188건 처리시간 0.03초

A study of static characteristics of New gas mixture in AC-PDP

  • Kwon, Shi-Ok;Kim, Ji-Sun;Joung, Bong-Kyu;Hwang, Ho-Jung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1191-1194
    • /
    • 2005
  • The effects of addition of $D_2$ to conventional gases on the discharge characteristics were investigated in this work with the aim of improving the voltage margin, the wall charge and the jitter. The addition of an extremely small gas-inlet amounts of $D_2$ increased the number of electrons which improves the $Xe^{\ast}$ density and $Xe_2^{\ast}$ density. As a result, the voltage margin, the jitter and the wall charge increased.

  • PDF

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.

리튬이차전지와 슈퍼커패시터로 구성된 하이브리드 셀의 전기화학적 특성 (Electrochemical Characteristics of Hybrid Cell Consisting of Li Secondary Battery and Supercapacitor)

  • 김상길;길보민;황갑진;유철휘
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigates the electrochemical characteristics of the hybrid cell that combined the advantageous characteristics of Li secondary battery and supercapacitor, high energy density and high power density, respectively. Electrochemical behaviors of the hybrid cell was characterized by charge/discharge, cycle and impedance tests. The hybrid cell using Li secondary battery and supercapacitor had better discharge capacity and cycle performance than that of using Li secondary battery only. Proper design of such a hybrid cell system is expected to result in substantial benefits to the well being of the Li secondary battery. The hybrid cell involving Li secondary battery for high energy density and supercapacitor for high power density may be the possible solution for future energy storage system.

2차 전지용 $LiMnO_{2}$ 활물질 합성의 전기화학적 특성과 평가 (Electrochemical properties and Estimation of $LiMnO_{2}$ Active Material Synthesis for Secondary Batteries)

  • 위성동;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.210-215
    • /
    • 2002
  • This thesis is contents on the crystal grown by the solide phase method at $925^{\circ}C$ with orthorhombic structure that $LiMnO_{2}$ active material synthesised with precurse $Mn_{2}O_{3}$ and $LiOH.H_{2}O$ material to get three voltage level. The porosity analysis of the grown crystal in secondary batteries $LiMnO_{2}$ thin film is $1.323E+02\AA$ of the average pore diameter of powder particles and its structure to be taken the pore diameter was prepared. Adding voltage area to get properties of charge and discharge of which experiment result of $LiMnO_{2}$ thin film area 2.2V~4.3V, current and scan speed were 0.1mAh/g and $0.2mV/cm^{2}$ respectively, and properties of the charge and discharge to be got optimum experiment condition parameter and density rate of Li for analyze that unit discharge capacity with metal properties is 87mAh/g was 96.9[ppm] at 670.784[nm] wavelength, and density rate of Mn analyzed 837[ppm] at 257.610[nm]. It can be estimated the quality of thin film that wrong cell reject from the bottle of electrolyte. The results of SEM and XRD were the same that of original researchers.

  • PDF

n-MOSFET 정전기 방전 분석 (Electrostatic Discharge Analysis of n-MOSFET)

  • 차영호;권태하;최혁환
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.587-595
    • /
    • 1998
  • Transient thermal analysis simulations are carried out using a modeling program to understand the human body model HBM ESD. The devices were simulated a one-dimensional device subjected to ESD stress by solving Poison's equation, the continuity equation, and heat flow equation. A ramp rise with peak ESD voltage during rise time is applied to the device under test and then discharged exponentially through the device. LDD and NMOS structures were studied to evaluate ESD performance, snap back voltages, device heating. Junction heating results in the necessity for increased electron concentration in the space charge region to carry the current by the ESD HBM circuit. The doping profile adihacent to junction determines the amount of charge density and magnitude of the electric field, potential drop, and device heating. Shallow slopes of LDD tend to collect the negative charge and higher potential drops and device heating.

  • PDF

$LiCoO_2/Li$ 2차전지의 충방전 특성 (Charge-discharge Characteristics of $LiCoO_2/Li$ Rechargeable Cell)

  • 문성인;도칠훈;정의덕;김봉서;박대욱;윤문수;염덕형;정목윤;박천준;윤성규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 춘계학술대회 논문집
    • /
    • pp.79-84
    • /
    • 1993
  • This paper describes the development of lithium rechargeable cell. $LiCoO_2$ is recently recognized as a suitable cathode active material of a high voltage, high energy lithium rechargeable batteries because $Li^+$ ion can be electrochemically deintercalated/intercalated from/to $Li_xCoO_2$. The transition metal oxide of $LiCoO_2$ was investigated for using as a cathode active material of 4V class Li rechargeable cell. $LiCoO_2$ cathode was prepared by using a active material of 85 wt%, graphite powder of 12 wt% as a conductor and poly-vinylidene fluoride of 3 wt% as a binder. The electrochemical and charge/discharge properties of $LiCoO_2$ were investigated by cyclic voltammetry and galvanostatic charge/discharge. The open circuit voltage of prepared $LiCoO_2$ electrode exhibited approximately. potential range between 3.32V and 3.42V. During the galvanostatic charge/discharge, $LiCoO_2/Li$ cell showed stable cycling behavior at scan rate of 1mV/sec and potential range between 3.6V and 4.2V. Also its coulombic efficiency as function of cycling was 81%~102%. In this study the $LiCoO_2/Li$ cell showed the available discharge capacity of 90.1 mAh/g at current density of $1mA/cm^2$ and cell discharge voltage range between 3.6V~4.2V.

  • PDF

유기전해질에 따른 EDLC의 전기화학적 특성 (Electrochemical Characteristics of EDLC with various Organic Electrolytes)

  • 양천모;이중기;조원일;조병원;임병오
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.113-117
    • /
    • 2001
  • 탄소계 전극을 사용하는 EDLC(Electric Double Layer Capacitor)용의 축전용량과 충방전속도는 전해질의 종류, 충방전 조건 그리고 탄소계 물질의 물리화학적 성질에 따라 크게 달라질 수 있다. 이에 본 연구에서는 dip coating method에 의해 제조된 EDLC용 활성탄소 전극에서 유기 전해질의 종류를 달리하여 충방전 실험과 전기화학적인 실험을 시행하였다. 또한 충전전류밀도와 방전전류밀도의 변화에 따른 비축전 용량의 변화를 조사하였고, 최적 유기전해질의 조건에서 leakage current 특성, 자가방전 특성 그리고 시간전압곡선을 기존의 $1M-Et_4NBF_4/PC$와 비교하였다 활성탄, 소전극으로 비표면적이 $2000m^2/g$인 MSP-20을 사용하고 유기전해질로는 $1M-LiPF_6/PC-DEC(1:1)$를 사용한 EDLC에서 130 F/g 정도의 우수한 비축전 용량을 나타내었고 저항면에서도 가장 낮은 수치를 나타내었다 $1M-LiPF_6/PCDEC(1:1)$를 사용한 EDLC는 15분동안 0.0004A의 낮은 leakage current와 100시간 경과 후 0.8V의 우수한 자가 방전 특성 그리고 IR-drop이 적은 선형의 시간-전압곡선을 보여주었다.

코로나 방전처리와 아크릴아미드 그라프트 중합에 의한 고분자 표면개질 (Modification of Polymer Surface by Corona Discharge and the Subsequent Graft Polymerization of Acrylamide)

  • 김형우;김찬영;박병기
    • 한국염색가공학회지
    • /
    • 제5권1호
    • /
    • pp.26-32
    • /
    • 1993
  • This study is concerned with the graft polymerization of acrylamide onto the surfaces of polyethylene and polyethylene terephthalate films treated with on corona discharge. In the case, peroxides formed by the corona discharge treatment are likely to be the species responsible for initiating the graft polymerization. This treatment produced a continuous charge in wettability and also amid group density on the polymer surface, as evidenced by water contact angle measurement, Fourier-transform infrared spectroscopy in the attenuated total reflectance mode, and electron spectroscopy for chemical analysis. Both of the merely corona-treated film and the subsequently grafted film are discussed as a function of time after treatment and water washings.

  • PDF

Supercapacitor용 $V_2O_5$-AC Composite의 충방전 특성 (Charge/discharge Properties of $V_2O_5$-AC Composite for Supercapacitor)

  • 김명산;김종욱;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.366-369
    • /
    • 1999
  • The purpose of this study is to research and develop V2Os-AC(activated carbon) composite electrode for supercapacitor. Supaercapacitor cell of V2Os-AC composite electrode with 25P70FLiCIO$_{4}$/PC$_{10}$/EC$_{10}$ polymer electrolyte bring out good capacitor Performance below 3V. The discharge capacitance of V2Os-AC(30:70) composite with 70wt.% AC in 1st and 200th cycles was 9.6 and 8.2 F/g at current density of 1m7/cm2. The capacitance of V$_2$O$_{5}$-AC composite with 70wt.% AC capacitor was larger than that of others. The coulombic efficiency of supercapacitor at discharge process of 1 and 200 cycles were 96 and 100%, respectively. V$_2$O$_{5}$-AC composite supercapacitor with 70wt.% AC content showed good capacitance and stability with cycling.ing.ing.

  • PDF

공기와 질소 분위기에서 공침법으로 합성된 Ni1/3Co1/3Mn1/3(OH)2 분말의 특성 비교 (Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres)

  • 최웅희;박세련;강찬형
    • 한국분말재료학회지
    • /
    • 제23권2호
    • /
    • pp.136-142
    • /
    • 2016
  • As precursors of cathode materials for lithium ion batteries, $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of $NH_4OH$ in air or nitrogen ambient. Calcination of the precursors with $Li_2CO_3$ for 8 h at $1,000^{\circ}C$ in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$. Regardless of the atmosphere, the final powders exhibit the XRD patterns of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.