• Title/Summary/Keyword: Charge-dipole

Search Result 85, Processing Time 0.034 seconds

Structure and Activity of Quinolone Antibacterial Agents. 1. 7-Substituted 1-Ethyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic Acids

  • Shin, Youn-Ho;Ryu, Eung K.;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.376-379
    • /
    • 1990
  • To find out a correlation between antibacterial activity and physical properties of 7-substituted 1-ethyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid, dipole moments, charge distributions, and hydrophobicities were calculated. The atomic charges and the dipole moments to not give any correlations with inhibition of DNA gyrase, but the calculated hydration free energies show some correlations.

Mechanism of workfunction modification on HAT-CN/Cu(111) interface: ab initio study

  • Kim, Ji-Hoon;Park, Yong-Sup;Kwon, Young-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.357-357
    • /
    • 2010
  • Using ab initio density functional theory, we study the structural and electronic properties of interface between Cu surface and highly electron withdrawing hexaazatriphenylene-hexanitrile (HAT-CN) known as an efficient hole injection layer for organic light emitting diodes (OLEDs). We calculate the equilibrium geometries of the interface with different HAT-CN coverages. Usually, some of C-N bonds located at the edge of the HAT-CN molecule are deformed toward Cu atoms resulting in the reconstruction of Cu surface. By analyzing the electron charge and the potential distributions over the interface, we observe the formation of surface dipoles, which modify the work function at the interface. Such dipole formation is attributed to two origins, one of which is a geometrical nature and the other is a bond dipole. The former is related to structural deformation mentioned above, whereas the latter is due to charge transfer between organic and metal surface.

  • PDF

Analysis on particle deposition onto a heated, horizontal free-standing wafer with electrostatic effect (정전효과가 있는 가열 수평웨이퍼로의 입자침착에 관한 해석)

  • Yoo, Kyung-Hoon;Oh, Myung-Do;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1284-1293
    • /
    • 1997
  • The electrostatic effect on particle deposition onto a heated, Horizontal free-standing wafer surface was investigated numerically. The deposition mechanisms considered were convection, Brownian and turbulent diffusion, sedimentation, thermophoresis and electrostatic force. The electric charge on particle needed to calculate the electrostatic migration velocity induced by the local electric field was assumed to be the Boltzmann equilibrium charge. The electrostatic forces acted upon the particle included the Coulombic, image, dielectrophoretic and dipole-dipole forces based on the assumption that the particle and wafer surface are conducting. The electric potential distribution needed to calculate the local electric field around the wafer was calculated from the Laplace equation. The averaged and local deposition velocities were obtained for a temperature difference of 0-10 K and an applied voltage of 0-1000 v.The numerical results were then compared with those of the present suggested approximate model and the available experimental data. The comparison showed relatively good agreement between them.

Magnetic Field Analysis Due to the Remanent Magnetization Distributed on a Ferromagnetic Thin Plate by using Equivalent Magnetic Models and Material Sensitivity (등가 자기모델과 매질민감도법을 이용한 강자성체 판에 분포하는 영구자화에 기인한 자기장 신호분석)

  • Jeung, Gi-Woo;Kim, Dong-Wook;Kim, Dong-Hun;Yang, Chang-Seob;Chung, Hyun-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.100-105
    • /
    • 2010
  • For predicting magnetic signals due to the remanent magnetization distributed on a ferromagnetic ship hull, this paper presents an efficient methodology for solving inverse problems, where the material sensitivity analysis based on the continuum mechanics is combined with the equivalent magnetic models. To achieve this, the 3D magnetic charge model and the magnetic dipole moment model are introduced and material sensitivity formulae applicable to each equivalent model are derived. The formulae offer the first-order gradient information of an objective function with respect to the variation of the magnetic charge or magnetic dipole and so an optimal solution can be easily obtained regardless of the number of design variables. To validate the proposed method, the numerical results are comparison with the real measurements of a mock-up model.

Determination of Net Atomic Charges Using a Modified Partial Equalization of Orbital Electronegativity Method V. Application to Silicon-Containing Organic Molecules and Zeolites

  • 석재은;노경태
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.915-923
    • /
    • 1995
  • The parameters for an empirical net atomic charge calculation method, Modified Partial Equalization of Orbital Electronegativity (MPEOE), were determined for the atoms in organosilicon compounds and zeolites. For the organosilicon family, the empirical parameters were determined by introducing both experimental and ab initio observables as constraints, these are the experimental and ab initio dipole moments, and the ab initio electrostatic potential of the organosilicon molecules. The Mulliken population was also introduced though it is not a quantum mechanical observable. For the parameter optimization of the atoms in the aluminosilicates, the dipole moments and the electrostatic potentials which calculated from the 6-31G** ab initio wave function were used as constraints. The empirically calculated atomic charges of the organosilicons could reproduce both the experimental and the ab inito dipole moments well. The empirical atomic charges of the aluminosilicates could reproduce the ab initio electrostatic potentials well also.

Energy-level alignment and charge injection at electrodeorganic interfaces

  • Helander, M.G.;Wang, Z.B.;Lu, Z.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.112-114
    • /
    • 2009
  • Charge injection at electrode-organic interfaces is key to the performance, lifetime and stability of organic electronic devices. The link between fundamental material properties and the energy-level alignment at electrode-organic interfaces will be discussed. In addition the impact of the injection barrier height-a parameterization of the energylevel alignment-on device characteristics will also be discussed.

  • PDF

Theoretical Results for a Dipole Plasmonic Mode Based on a Forced Damped Harmonic Oscillator Model

  • Tongtong Hao;Quanshui Li
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.449-456
    • /
    • 2023
  • The localized surface-plasmon resonance has drawn great attention, due to its unique optical properties. In this work a general theoretical description of the dipole mode is proposed, using the forced damped harmonic oscillator model of free charges in an ellipsoid. The restoring force and driving force are derived in the quasistatic approximation under general conditions. In this model, metal is regarded as composed of free charges and bound charges. The bound charges form the dielectric background which has a dielectric function. Those free charges undergo a collective motion in the dielectric background under the driving force. The response of free charges will not be included in the dielectric function like the Drude model. The extinction and scattering cross sections as well as the damping coefficient from our model are verified to be consistent with those based on the Drude model. We introduce size effects and modify the restoring and driving forces by adding the dynamic depolarization factor and the radiation damping term to the depolarization factor. This model provides an intuitive physical picture as well as a simple theoretical description of the dipole mode of the localized surface-plasmon resonance based on free-charge collective motion.

Theoretical Studies on the Structure and Acidity of Meldrum's Acid and Related Compounds

  • Lee, Ik-Choon;Han, In-Suk;Kim, Chang-Kon;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1141-1149
    • /
    • 2003
  • The structures and gas-phase ionization energies (ΔG°) of Meldrum's acid (I) and related cyclic (II-VI) and acyclic compounds (VII-IX) are investigated theoretically at the MP2/6-31+$G^*$, B3LYP/6-31+$G^*$, B3LYP/6- 311+$G^{**}$, B3LYP/6-311++G(3df,2p) and G3(+)(MP2) levels. Conformations of three neutral cyclic series vary gradually from boat (Meldrum's acid, I), to twisted chair (II) and to chair (III) as the methylene group is substituted for the ether oxygen successively. The preferred boat form of I can be ascribed to the two strong $n_O$ → σ* c-c antiperiplanar vicinal charge transfer interactions and electrostatic attraction between negatively charged C¹ and positively charged C⁴at the opposite end of the boat. All the deprotonated anionic forms have half-chair forms due to the two strong $n_C$ → π* c=0 vicinal charge transfer interactions. The dipole-dipole interaction theory cannot account for the higher acidity of Meldrum's acid (I) than dimedone (III). The origin of the anomalously high acidity of I is the strong increase in the vicinal charge transfer ($n_C$ → π* c=0) and 1,4-attrative electrostatic interactions (C¹↔C⁴) in the ionization (I → $I^-$ + $H^+$). In the acyclic series (VII-IX) the positively charged end atom, C⁴, is absent and the attractive electrostatic stabilization (C¹↔C⁴) is missing in the anionic form so that the acidities are much less than the corresponding cyclic series.

Theoretical Study of Trioxane Derivatives as Amphi-ionophores: Importance of Charge-Dipolar Moiety Orientation

  • Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2723-2725
    • /
    • 2014
  • Recently we have reported a novel class of anion receptors which are based on 2n-crown-n topology. Trioxane derivatives are capable of anion sensing through pure aliphatic C-H hydrogen bonding. In this work, we highlight another interesting property, i.e., they can also recognize cations as normal crown ethers (3n-crown-n topology). Since the same functional moiety can recognize anions and cations, these coronands are predicted to be amphi-ionophores. However, we could not detect cations even in the gas phase. Considering trioxane is analogous to [$1_6$]starand, this was rather counter-intuitive. The calculation results show that these coronands can detect alkali metals with very low affinity. The low affinity toward cations should be responsible for this failure of experimental detection. With careful theoretical study, we found that this low affinity toward cations could be explained by the unfavorable charge-dipolar moiety orientations as proposed by Cui et al. As in the case of [$1_6$]starand, this is an example that underscores the importance of charge-dipolar moiety orientation in supramolecular interactions.

A Study on the Space Charge Polarity Measurement Teasurement Technology of Cross-Linked Polyethylene for Power Cable (전력케이블용 가교폴리에틸렌의 공간전하 극성측정기술에 관한 연구)

  • 국상훈;서장수;김병인;박중순
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.23-31
    • /
    • 1992
  • Charged particle in the polymers is supposed to affect the electrical conduction and to lead them th dielectrical breakdown finally. So we measured the space charge distribution made by application of high electric field and evaluated the polarity of the charged particle affected on electrical conduction and space charge formed in the insulating materials by using temperature gradient thermally stimulated current measurement method(TG-TSC measurement). As a result, in the cross-linked polyethylene, A-peak was caused from dipole polarization, C-peak was caused from ionic space charge polarization and D-peak was injected trap hole. Also we found it crossible the evaluated the polarity of injected trap carrier and electron(or hole) of carrier trap in the cross-lined polyethylene. We found that ${\gamma}$-ray irradiated low density polyethylene had a relation to the electronic trap and we also could get the value of electric field distribution in the samples of which evaluation was available.

  • PDF