• 제목/요약/키워드: Charge balancing

검색결과 89건 처리시간 0.026초

열펌프의 성능 최적화에 관한 연구 (Optimization of Heat Pump Systems)

  • 최종민;윤린;김용찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump are investigated at various operating conditions. Cooling capacity of the heat pump system is strongly dependent on load conditions. The heat pump system is very sensitive with a variation of refrigerant charge amount. But, the performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

Development of an Optimized Algorithm for Bidirectional Equalization in Lithium-Ion Batteries

  • Sun, Jinlei;Zhu, Chunbo;Lu, Rengui;Song, Kai;Wei, Guo
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.775-785
    • /
    • 2015
  • Many equalization circuits have been proposed to improve pack performance and reduce imbalance. Although bidirectional equalization topologies are promising in these methods, pre-equalization global equalization strategy is lacking. This study proposes a novel state-of-charge (SoC) equalization algorithm for bidirectional equalizer based on particle swarm optimization (PSO), which is employed to find optimal equalization time and steps. The working principle of bidirectional equalization topologies is analyzed, and the reason behind the application of SoC as a balancing criterion is explained. To verify the performance of the proposed algorithm, a pack with 12 LiFePO4 batteries is applied in the experiment. Results show that the maximum SoC gap is within 2% after equalization, and the available pack capacity is enhanced by 13.2%. Furthermore, a comparison between previously used methods and the proposed PSO equalization algorithm is presented. Experimental tests are performed, and results show that the proposed PSO equalization algorithm requires fewer steps and is superior to traditional methods in terms of equalization time, energy loss, and balancing performance.

Charge Balance Control Methods for a Class of Fundamental Frequency Modulated Asymmetric Cascaded Multilevel Inverters

  • Babaei, Ebrahim
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.811-818
    • /
    • 2011
  • Modulation strategies for multilevel inverters have typically focused on synthesizing a desired set of sinusoidal voltage waveforms using a fixed number of dc voltage sources. This makes the average power drawn from different dc voltage sources unequal and time varying. Therefore, the dc voltage sources are unregulated and require that corrective control action be incorporated. In this paper, first two new selections are proposed for determining the dc voltage sources values for asymmetric cascaded multilevel inverters. Then two modulation strategies are proposed for the dc power balancing of these types of multilevel inverters. Using the charge balance control methods, the power drawn from all of the dc sources are balanced except for the dc source used in the first H-bridge. The proposed control methods are validated by simulation and experimental results on a single-phase 21-level inverter.

Battery State of Charge Balancing Based on Low Bandwidth Communication in DC Microgrid

  • Hoang, Duc-Khanh;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.33-34
    • /
    • 2016
  • This paper presents a load sharing method based on the low bandwidth communication (LBC) applied to a DC microgrid in order to balance the state of charge (SOC) of the battery units connected in parallel to the common bus. In this method, SOC of each battery unit is transferred to each other through LBC to calculate average SOC value. After that, droop coefficients of battery units are adjusted according to the difference between SOC of each unit and average SOC value of all batteries in the system. The proposed method can effectively balance the SOC of battery units in charging and discharging duration with a simple low bandwidth communication system.

  • PDF

Low-Voltage-Stress AC-Linked Charge Equalizing System for Series-Connected VRLA Battery Strings

  • Karnjanapiboon, Charnyut;Jirasereeamornkul, Kamon;Monyakul, Veerapol
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.186-196
    • /
    • 2013
  • This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consists of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of the unbalanced charging of batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires a redesign of the hardware and related components. It also faces a high voltage stress when the number of batteries is expanded. Modularized solutions use low-voltage-stress, double-stage, DC-linked topologies which leads to poor energy transfer efficiency. The proposed solution uses a low-voltage stress, AC-linked, modularized topology that makes adding more batteries easier. It also has a better energy transfer efficiency. To ensure that the charge equalization system operates smoothly and safely charges batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system is 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

충전 프로파일 및 셀 밸런스 제어기술을 활용한 대용량 리튬이온 배터리 고속충전시스템 개발 (Development of a Fast Charging System Utilizing Charge Profile and Cell Balance Control Technology for Large Capacity Lithium-ion Batteries)

  • 가니 도가라 유나나;안재영;박찬원
    • 산업기술연구
    • /
    • 제40권1호
    • /
    • pp.7-12
    • /
    • 2020
  • Lithium-ion cells have become the go-to energy source across all applications; however, dendritic growth remains an issue to tackle. While there have been various research conducted and possible solutions offered, there is yet to be one that efficiently rules out the problem without, however, introducing another. This paper seeks to present a fast charging method and system to which lithium-ion batteries are charged while maintaining their lifetime. In the proposed method, various lithium cells are charged under multiple profiles. The parameters of charge profiles that inflict damage to the cell's electrodes are obtained and used as thresholds. Thus, during charging, voltage, current, and temperature are actively controlled under these thresholds. In this way, dendrite formation suppressed charging is achieved, and battery life is maintained. The fast-charging system designed, comprises of a 1.5kW charger, an inbuilt 600W battery pack, and an intelligent BMS with cell balancing technology. The system was also designed to respond to the aging of the battery to provide adequate threshold values. Among other tests conducted by KCTL, the cycle test result showed a capacity drop of only 0.68% after 500 cycles, thereby proving the life maintaining capability of the proposed method and system.

3-레벨 AFE 정류기의 캐리어 기반 중성점 제어 기법 (A carrier based neutral point balancing strategy for 3-level active-front-end rectifiers)

  • 강경필;김호성;조진태;조영훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.212-213
    • /
    • 2017
  • In this paper is presented a pre-charging sequence for single-phase cascaded neutal-point-clamped(NPC) converters for capacitors voltage balancing. capacitor imbalance problem in pre-charge sequence is caused in cascaded NPC converter by its topology. the DC link voltage at each NPC converter module can be balanced by the proposed switching method. the design and performance of the proposed sequence are verified by simulation and experimental results using prototype.

  • PDF

이중강압 DC-DC 컨버터를 이용한 새로운 LED 전류 밸런싱 기법 (A New Current Balancing Operation for LED using Double-Step-Down DC-DC Converter)

  • 김기수;도 득 드완;차헌녕;김흥근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.347-348
    • /
    • 2017
  • This paper presents a new current balancing operation for LED using double-step-down dc-dc converter. The two output currents of the proposed converter can be balanced by charge balance condition although the two output resistances are different. In addition, voltage stresses of the switches of the proposed converter are lower than those of interleaved buck converter. To verify the operation of the proposed converter, simulation program is used.

  • PDF

마이크로그리드에서 SOC균형을 고려한 ESS의 충·방전 전력배분 방법 (Power Allocation Method for Multiple ESS Control Considering SOC Balancing in Microgrids)

  • 이상욱;박준호
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.292-299
    • /
    • 2017
  • In this paper, multiple ESS(Energy Storage System) control strategy for microgrids is presented. Installation of ESS becomes mandatory when microgrids are used to supply high quality power to the loads. The one of main functions of the ESS is to maintain power balance. However ESS has limitation of its capacity and instantaneous injecting power. Power allocation method based on SOC(State Of Charge) of each ESS is proposed. P-Q control is employed as the basic control strategy for the distributed ESSs. By using the proposed method, the coefficients in the conventional P-Q control method are modified. The ESSs with higher SOC inject more active power, while those with lower SOC inject less, leading to more balanced SOC levels among the ESSs. The proposed method is demonstrated by simulation using PSCAD/EMTDC.

A New Cost-Effective Current-Balancing Multi-Channel LED Driver for a Large Screen LCD Backlight Units

  • Hong, Sung-Soo;Lee, Sang-Hyun;Cho, Sang-Ho;Roh, Chung-Wook;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.351-356
    • /
    • 2010
  • A new current-balancing multi-channel LED driver is proposed in this paper. The conventional LED driver system consists of three cascaded power conversion stages and its driver stage has the same number of expensive boost converters as those of the LED channels. On the other hand, the proposed LED driver system consists of two cascaded power stages and its driver stage requires only passive devices instead of expensive boost converters. Nevertheless, all of the currents through multi-channel LEDs can be well balanced. Therefore, it features a smaller system size, improved efficiency, and lower cost. To confirm the validity of the proposed driver, its operation and performance are verified on a prototype for a 46" LCD TV.