• 제목/요약/키워드: Charge and discharge control for the battery

검색결과 56건 처리시간 0.027초

Development of Battery Management System for Electric Vehicle Applications of Ni/MH Battery

  • Jung Do Yang;Lee Baek Haeng;Kim Sun Wook
    • 전기화학회지
    • /
    • 제4권4호
    • /
    • pp.152-159
    • /
    • 2001
  • 전기자동차의 성능은 축전지의 성능에 의해 크게 좌우된다. 그러므로 우수한 성능과 높은 신뢰성을 가진 전기자동차를 개발하기 위해서는 다양한 운영조건에서 축전지가 최대의 성능을 가질 수 있게 잘 관리되어야 한다. 축전지의 성능 향상은 축전지 관리 시스템(BMS)의 적용에 의해 달성될 수 있으며 BMS는 축전지의 상태 감시뿐만 아니라 축전지의 충전 및 방전을 최적화하는 중요한 역할을 수행한다. 이 연구에서는 전기자동차에 적용된 니켈 메탈하이드라이드 전지(Ni/MH battery) 이용을 최대화하기 위한 역할을 수행하는 BMS를 개발하였다 이 시스템은 축전지의 충전 및 방전 제어, 과충전 및 과방전 방지, 잔존용량 계산 및 표시, 안전관리 및 열관리 등의 기능을 가진다. 금번 개발된 BMS를 대우자동차와 고등기술원이 공동 개발한 DEV5-5전기자동차에 장착하여 시험을 수행하였다. 이 차량에는 파나소닉사의 12V-95Ah사양의 Ni/MH battery 18모듈이 적용되었다 시험결과 이 시스템은 $3\%$ 이내의 높은 정확성을 가지고 있으며 우수한 신뢰성을 나타내었다. 이 BMS는 전기자동차의 신뢰성과 안전도뿐만 아니라 Ni/MH battery pack의 성능과 수명을 향상시킬 것이다.

x-HEV용 AGM 연축전지/EDLC 통합모듈의 성능 및 충방전 거동 (Charging-Discharging Behavior and Performance of AGM Lead Acid Battery/EDLC Module for x-HEV)

  • 김성준;서성원;안신영;김봉구;손정훈;정연길
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.84-91
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG and charging control systems are applied to HEV vehicles for the purpose of improving fuel economy. These systems require quick charge-discharge performance of high current. Therefore, a Module of the AGM battery with high energy density and EDLC(Electric Double Layer Capacitor) with high power density are constructed to study the charging and discharging behavior. In CCA, which evaluates the starting performance at -18 ℃ & 30 ℃ with high current, EDLC contributed for about 8 sec at the beginning. At 0 ℃ CA (Charge Acceptance), the initial Charging current of the AGM/EDLC Module, is twice that of the AGM lead acid battery. To play the role of EDLC during high-current rapid charging and discharging, the condition of the AGM lead-acid battery is optimally maintained. As a result of a Standard of Battery Association of Japan (SBA) S0101 test, the service life of the Module of the AGM Lead Acid Battery/EDLC is found to improve by 2 times compared to that of the AGM Lead Acid Battery.

Experimental Verification of Electric Vehicle Using Electric Double Layer Capacitor

  • Ikeda, Hidehiro;Ajishi, Hideki;Hanamoto, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.171-178
    • /
    • 2013
  • This paper discusses to conduct experimental verification of two types of micro electric vehicles (EV) in order to realize improvement in electric mileage and shorten a charging time of the battery. First, electric double layer capacitor (EDLC) systems to use as a secondary battery are proposed. The internal resistance of EDLC is small compared with a rechargeable battery, and it is suitable for momentary charge-discharge of EV. Next, control circuits of the capacitors to increase the regenerative electric power are utilized. Then, a novel method to charge a main battery of the EV is introduced. Finally, experimental results demonstrate the validity of the proposed method.

Parameter Design and Power Flow Control of Energy Recovery Power Accumulator Battery Pack Testing System

  • Bo, Long;Chong, Kil To
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.787-798
    • /
    • 2013
  • This paper proposes a special power circuit topology and its corresponding control strategy for an energy recovery power accumulator battery pack testing system (PABPTS), which is particularly used in electric vehicles. Firstly, operation principle and related parameter design for the system are illustrated. Secondly, control strategy of the composite power converter for PABPTS is analyzed in detail. The improved scheme includes a high accuracy charge and discharge current closed loop. active power reference for the grid-side inverter is provided by the result of multiplication between battery pack terminal voltage and test current. Simulation and experimental results demonstrate that the proposed scheme could not only satisfy the requirements for PABPTS with wide-range current test, but also could recover the discharging energy to the power grid with high efficiency.

온-라인 비중계를 이용한 전기자동차용 바테리 잔존용량계의 성능개선 (Performance improvement of SOC indicator for electric vehicle using hydrometer)

  • 박종건;임영철;박철수;류영재
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.423-426
    • /
    • 1996
  • The conditions to be satisfied with SOC(State-of-Charge) indicator installed on the electric vehicle were that it should be used under frequent loading conditions and that it should enable the monitor to adjust to the aging effect. But, the state-of-charge test requires a lengthy stabilization period after discharge cycles and the ampere-hour test requires the knowledge of the battery capacity in terms of amp-hours. However, a monitoring technique combining the state-of-charge test to enable the monitor to adjust to the aging effect with the ampere-hour test to use under frequent loading condition is studied and implemented on a microcontroller-based circuit in this paper. Specially, optical fiber is used to realize hydrometer which is immune to electromagnetic interference and toxic environment and makes it possible to be used in a wide temperature range.

  • PDF

연료전지자동차에서 연료이용률과 연료전지 내구성 향상을 위한 양방향 DC-DC 컨버터의 제어기법 (A Control Method of Bidirectional DC-DC Converter for Fuel Utilization and Durability Improvement in Fuel Cell Vehicles)

  • 조진상;정상민;이진희;한수빈;최세완
    • 전력전자학회논문지
    • /
    • 제10권5호
    • /
    • pp.428-435
    • /
    • 2005
  • 본 논문에서는 연료전지 자동차와 같은 하이브리드 시스템에서 양방향 DC-DC 컨버터에 의한 충${\cdot} $방전 동작시 지령전력을 정확히 제어하여 연료전지의 내구성을 향상시키기 위한 전력제어기를 제안하고자 한다. 또한 연료이용률을 향상시키고 배터리의 SOC를 일정하게 하여 에너지를 효율적으로 사용하기 위한 양방향컨버터의 충${\cdot}$방전 운전 알고리즘을 제안한다.

리튬 2차 전지의 열적 모델링 및 용량 예측에 관한 연구 (The Study on Thermal Modeling and Charge Capacity Estimation for Lithium Secondary Battery)

  • 김종원;조현찬;김광선;조장군;이정수;호빈
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.53-57
    • /
    • 2007
  • In this paper, the intelligent estimation algorithm is developed for residual quantity estimate of lithium secondary cell and we suggest the control algorithm to get battery SOC through thermal modeling of electric cell. Lithium secondary cell gives cycle life, charge characteristic, discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc. Therefore, we make an accurate estimate of the capacity of battery according to thermal modeling to know the capacity of electric cell that is decreased by various special quality of lithium secondary cell. And we show effectiveness through comparison of value as result that use simulation and fuzzy logic.

  • PDF

Analysis, Design and Implementation of Flexible Interlaced Converter for Lithium Battery Active Balancing in Electric Vehicles

  • Dai, Shuailong;Wang, Jiayu;Li, Teng;Shan, Zhifei;Wei, Yewen
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.858-868
    • /
    • 2019
  • With the widespread use of modern clean energy, lithium-ion batteries have become essential as a more reliable energy storage component in the energy Internet. However, due to the difference in monomers, some of the battery over-charge or over-discharge in battery packs restrict their use. Therefore, a novel multiphase interleaved converter for reducing the inconsistencies of the individual cells in a battery pack is proposed in this paper. Based on the multiphase converter branches connected to each lithium battery, this circuit realizes energy transferred from any cell(s) to any other cell(s) complementarily. This flexible interlaced converter is composed of an improved bi-directional Buck-Boost circuit that is presented with its own available control method. A simulation model based on the PNGV model of fundamental equalization is built with four cells in PSIM. Simulation and experimental results demonstrate that converter and its control achieve simple and fast equalization. Furthermore, a comparison of traditional methods and the HNFABC equalization is provided to show the performance of the converter and the control of lithium-based battery stacks.

해양기기 적용을 위한 해수이차전지 패키지 및 BMS 모듈 설계 (Design of Seawater Rechargeable Battery Package and BMS Module for Marine Equipment)

  • 김형준;이경창;손호준;박신준;박철수
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.49-55
    • /
    • 2022
  • The design of a battery package and a BMS module for applications using seawater rechargeable batteries, which are known as next-generation energy storage devices, is proposed herein. Seawater rechargeable batteries, which are currently in the initial stage of research, comprise primarily components such as anode and cathode materials. Their application is challenging owing to their low charge capacity and limited charge/discharge voltage and current. Therefore, we design a method for packaging multiple cells and a BMS module for the safe charging and discharging of seawater rechargeable batteries. In addition, a prototype seawater rechargeable battery package and BMS module are manufactured, and their performances are verified by evaluating the prevention of overcharge, overdischarge, overcurrent, and short circuit during charging and discharging.

EDLC의 특성을 고려한 동적전압보상시스템의 개발 (Development of Dynamic Voltage Restorer System Considering Characteristics of EDLC)

  • 이상철;서일동
    • 전기학회논문지P
    • /
    • 제59권3호
    • /
    • pp.288-292
    • /
    • 2010
  • Recently, in energy storage system, the EDLC is paid attention as a new environmentally friendly energy storage element. This capacitor has higher energy density than the electrolytic capacitor. Also, this capacitor has a lot of advantage such as no maintenance, longer life cycle and faster charge-discharge time than the battery system. But the EDLC must have a each charge-discharge controller to effectively control, an energy design method circuit to use effectively energy, and several compensation techniques to control a optimal operating. In this respect, this study suggests major parameters to effectively represent the characteristics of EDLC, the measurement methods of those parameters have been investigated with experiments, and the interpretation about the buck/boost DC/DC converter for the operation of EDLC.