• 제목/요약/키워드: Charge Separation

검색결과 200건 처리시간 0.025초

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권2호
    • /
    • pp.69-74
    • /
    • 2010
  • Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.

Nanofiltration of Electrolytes with Charged Composite Membranes

  • Choi, J.H.;Yeom, C.K.;Lee, J.M.;Suh, D.S.
    • 멤브레인
    • /
    • 제13권1호
    • /
    • pp.29-36
    • /
    • 2003
  • A characterization of the permeation and separation using single salt solution was carried out with charged composite membranes. Various charged composite membranes were fabricated by blending an ionic polymer with a nonionic polymer in different ratios. In this study, sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic, cationic and nonionic polymers, respectively. The permeation and separation behaviors of the aqueous salt solutions have been investigated through the charged composite membranes with various charge densities. As the content of the ionic polymer increased in the membrane, the hydrophilicity of the membrane increased, and pure water flux and the solution flux increased correspondingly, indicating that the permeation performance through the membrane is determined mainly by its hydrophilicity. Electrostatic interaction between the charged membrane and ionic solute molecules, that is, Donnan exclusion, was observed to be attributed to salt rejection to a greater extent, and molecular sieve mechanism was effective for the separation of salts under a similar electrostatic circumstance of solutes.

LX하우시스 계열분리에 따른 기업 구성원이 인지한 심리적 계약위반에 관한 연구 (A Study on the Psychological Contract Violation of Company Members by Affiliates Separation of LX HAUSYS)

  • 김성건;이성준
    • 디지털산업정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.111-125
    • /
    • 2022
  • The general view of the division of affiliates of many large corporations is a reorganization of the governance structure, and the smooth division of affiliates is often well wrapped up in a beautiful breakup. However, the parties to the breakup are not only the owners of the company, but all employees as well. Separation of the owner family can be done with joy and good feelings, because they are separated according to the will of the owner family, and each becomes the owner of the company. As Commitment decreases and turnover behavior appears, it is necessary to take a strategic approach to members, along with consideration. This study looked into the recent separation of LG Group's affiliates based on this point of view. To this end, we focused on the case of LX Hausys of LX Group, which was separated from LG Group. To this end, through a meeting with the person in charge of LX Hausys, the company's response to the division was investigated, and FGI was conducted for retired and current members. As a result, it was confirmed through the person in charge that no appropriate measures were taken due to the separation of the company. Through FGI with the retirees and incumbents, the psychological resistance of the members and the decrease in organizational commitment and the increase in turnover intention was confirm.

발사체 목업(Mock-up) 위성의 파이로 충격 측정 결과 (Pyroshock measurement results of satellite mock-up for launch vehicle)

  • 윤세현;정호경;서상현;장영순;이영무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.363-366
    • /
    • 2006
  • In general, pyrotechnic shock or pyroshock is generated during the operation of separation devices, which use explosives, such as pyrobolt, puronut, purocutter, linear shape charge, and so on. During the flight of launch vehicle, pyroshock is mainly produced at the events of satellite separation, fairing separation and stage separation. In this paper, characteristics of pyroshock are introduced in the first place and measured shock result data at the UMR of satellite mock-up during the separation tests of satellite and fairing are suggested. These results are compared with the suggested pyroshock test specification of satellite, and it finally confirms that the specification is reasonable for the qualification of satellite against pyroshock.

  • PDF

New Calculation of Charge Generation Efficiency and Photocurrent in Organic Photoconducting Device

  • Lee, Choong-Kun;Oh, Jin-Woo;Choi, Chil-Sung;Lee, Nam-Soo;Kim, Nak-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.97-101
    • /
    • 2009
  • A new approach was applied to examine the charge generation and transport in organic photoconductive devices by Monte‐Carlo simulation utilizing multiple site interactions of carriers with all other charges within Coulomb radius. Stepwise generation frame was considered first by a charge separation process that was counted in two separate transactions, i.e., hopping against physical decay and dissociation against recombination. Thereafter, diffusion/ drifting process of free carriers was counted to follow. This method enables to examine readily the photocurrent generated alongside the charge generation efficiency. The field and temperature dependences of the efficiency and photocurrent were obtained comparable to Onsager’s and experimental data.

Solvent Effect on the Dynamics of Radical Ion Pair Separation

  • Han, Chul-Hee
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.33-37
    • /
    • 2001
  • Picosecond absorption spectroscopy has been employed in the study of the solvent dynamics of 1, 2, 4, 5-tetracyanobenzene/biphenyl derivative radical ion pairs, and the resulting rates of radical ion pair separation are faster in acetonitrile than in dichloromethane. In an effort to account quantitatively for such solvent effect on the rate of radical ion pair separation, an equation for the rate of radical ion pair separation is introduced, in which the rate depends exponentially on the electrostatic interaction energy in the radical ion pair. In our analysis of the types of electrostatic interaction energy based on the conducting spheres in dielectric continuum was chosen, and the rate equation employing this electrostatic energy provided information on the distance on the distance of radical ion pair separation and solvation energy of the radical ion pair, thereby providing quantitative explanation for the observed solvent effect on the rate of radical ion pair sepaaration.

  • PDF

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • 김지민;양우석;오윤정;문주호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

Electron Spin Resonance and Electron Nuclear Double Resonance Studies on the Photoinduced Charge Separation of N-Methylphenothiazine in Phenyltriethoxysilane, Vinyltriethoxysilane and Methyltriethoxysilane Gel Matrices

  • Kang, Young-Soo;Park, Chan-Young
    • 한국자기공명학회논문지
    • /
    • 제4권2호
    • /
    • pp.91-102
    • /
    • 2000
  • The photoproduced cation radical of N-methylphenothiazine doped in the different kind of matrices of phenyltriethoxysilane (PhiTEOS), vinyltriethoxysilane (VTEOS), and methyloiethoxysilane (METOS) was comparatively studied with electron spin resonance (ESR) and electron nuclear double resonance (ENDOR). The photoinduced charge separation efficiency was determined by integration of ESR spectra which correspond to the amount of photoproduced cation radical in the matrices. This was correlatively studied with the polarity and pore size of the gel matrices. The polarity of the matrices was comparatively determined by measuring λ$\sub$max/ values of PC$_1$ in the different matrices. The relative pore size among the matrices was determined by measuring relative proton matrix ENDOR line widths of the photoproduced cation radical of PCI. The decay kinetic constants of the cation radical of PCI in the different matrices was relatively studied with fitting the biexponential decay curves after exposure into the ambient condition. This is correlatively interpreted with the polarity and pore size of the matrices.

  • PDF

Application of Nanoroll-Type Ag/g-C3N4 for Selective Conversion of Toxic Nitrobenzene to Industrially-Valuable Aminobenzene

  • Devaraji, Perumal;Jo, Wan-Kuen
    • 한국환경과학회지
    • /
    • 제29권1호
    • /
    • pp.95-108
    • /
    • 2020
  • Silver nanoparticles were loaded onto g-C3N4 (CN) with a nanoroll-type morphology (Ag/CN) synthesized using a co-polymerization method for highly selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ag/CN revealed the generation of the nanoroll-type morphology of CN. Additionally, HRTEM analysis provided direct evidence of the generation of a Schottky barrier between Ag and CN in the Ag/CN nanohybrid. Photoluminescence analysis and photocurrent measurements suggested that the introduction of Ag into CN could minimize charge recombination rates, enhancing the mobility of electrons and holes to the surface of the photocatalyst. Compared to pristine CN, Ag/CN displayed much higher ability in the photocatalytic reduction of nitrobenzene to aminobenzene, underscoring the importance of Ag deposition on CN. The enhanced photocatalytic performance and photocurrent generation were primarily ascribed to the Schottky junction formed at the Ag/CN interface, greater visible-light absorption efficiency, and improved charge separation associated with the nanoroll morphology of CN. Ag would act as an electron sink/trapping center, enhancing the charge separation, and also serve as a good co-catalyst. Overall, the synergistic effects of these features of Ag/CN improved the photocatalytic conversion of nitrobenzene to aminobenzene.

직접 광대전의 대전특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Direct Photoelectric Charging)

  • 이창선;김용진;김상수
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.753-759
    • /
    • 2000
  • Photoelectric charging is a very efficient way of charging small particles. This method can be applied to combustion measurement, electrostatic precipitator, metal separation and control of micro-contamination. To understand the photoelectric charging mechanism, particle charging of silver by exposure to ultraviolet is investigated in this study. Average charges and charge distributions are measured at various conditions, using two differential mobility analyzers, a condensation nucleus counter, and an aerosol electrometer. The silver particles are generated in a spark discharge aerosol generator. After that process, the generated particles are charged in the photoelectric charger using low-pressure mercury lamp that emits ultraviolet having wavelength 253.7 nm. The results show that ultra-fine particles are highly charged by the photoelectric charging. The average charges linearly increase with increasing particle size and the charge distribution change with particle size. These results are discussed by comparison with previous experiments and proposed equations. It is assumed that the coefficient of electron emission probability is affected by initial charge. The results also show that the charge distribution of a particle is dependent on initial charge. Single changed particle, uncharged particle and neutralized particle are compared. The differences of charge distribution in each case increase with increasing particle size.