• Title/Summary/Keyword: Charge Pump Current

Search Result 112, Processing Time 0.033 seconds

The Design of a Low Power and Wide Swing Charge Pump Circuit for Phase Locked Loop (넓은 출력 전압 범위를 갖는 위상동기루프를 위한 저전압 Charge Pump 회로 설계)

  • Pu, Young-Gun;Ko, Dong-Hyun;Kim, Sang-Woo;Park, Joon-Sung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.44-47
    • /
    • 2008
  • In this paper, a new circuit is proposed to minimize the charging and discharging current mismatch in charge pump for UWB PLL application. By adding a common-gate and a common-source amplifier and building the feedback voltage regulator, the high driving charge pump currents are accomplished. The proposed circuit has a wide operation voltage range, which ensures its good performance under the low power supply. The circuit has been implemented in an IBM 0.13um CMOS technology with 1.2V power supply. To evaluate the design effectiveness, some comparisons have been conducted against other circuits in the literature.

A Feed-forward Method for Reducing Current Mismatch in Charge Pumps (전하 펌프의 전류 부정합 감소를 위한 피드포워드 방식)

  • Lee, Jae-Hwan;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • Current mismatch in a charge pump causes degradation in spectral purity of the phase locked loops(PLLs), such as reference spurs. The current mismatch can be reduced by increasing the output resistance of the charge pump, as in a cascoded output stage. However as the supply voltage is lowered, it is hard to stack transistors. In this paper, a new method for reducing the current mismatch is proposed. The proposed method is based on a feed-forward compensation for the channel length modulation effect of the output stage. The new method has been demonstrated through simulations on typical $0.18{\mu}m$ CMOS circuits.

An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications

  • Hwu, Kuo-Ing;Jiang, Wen-Zhuang
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1277-1287
    • /
    • 2016
  • This study proposes a novel isolated high step-up galvanic converter, which is suitable for renewable energy applications and integrates a boost converter, a coupled inductor, a charge pump capacitor cell, and an LC snubber. The proposed converter comprises an input inductor and thus features a continuous input current, which extends the life of the renewable energy chip. Furthermore, the proposed converter can achieve a high voltage gain without an extremely large duty cycle and turn ratio of the coupled inductor by using the charge pump capacitor cell. The leakage inductance energy can be recycled to the output capacitor of the boost converter via the LC snubber and then transferred to the output load. As a result, the voltage spike can be suppressed to a low voltage level. Finally, the basic operating principles and experimental results are provided to verify the effectiveness of the proposed converter.

Design of the Charge pump PLL using Dual PFD (듀얼 위상 주파수 검출기를 이용한 차지펌프 PLL 설계)

  • Lee, Jun-Ho;Lee, Geun-Ho;Son, Ju-Ho;Kim, Sun-Hong;Yu, Young-Gyu;Kim, Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.20-26
    • /
    • 2001
  • In this paper, the charge pump PLL using the dual PFD to improve the trade-off between acquisition behavior and locked behavior is proposed. This dual PFD consists of a positive edge triggered PFD and a negative edge triggered PFD. The proposed charge pump shows that it is possible to overcome the issue of the charge pump current imsmatch by the current subtraction circuit. Also, this charge pump can suppress reference spurs and disturbance of the VCO control voltage. The proposed charge pump PLL is simulated by SPICE using 0.25${\mu}m$ CMOS process parameters.

  • PDF

A DC-DC Converter Design with Internal Capacitor for TFT-LCD Driver IC (TFT -LCD 구동 IC용 커패시터 내장형 DC-DC 변환기 설계)

  • Lim Gyu-Ho;Kang Hyung-Geun;Lee Jae-Hyung;Sohn Ki-Sung;Cho Ki-Seok;Baek Seung-Myun;Sung Kwan-Young;Li Long-Zhen;Park Mu-Hun;Ha Pan-Bong;Kim Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1266-1274
    • /
    • 2006
  • A non-overlap boosted-clock charge pump(NBCCP) with internal pumping capacitor, an advantageous circuit from a minimizing point of TFT-LCD driver IC module, is proposed in this paper. By using the non-overlap boosted-clock swinging in 2VDC voltage, the number of pumping stages is reduced to half and a back current of pumping charge from charge pumping node to input stage is also prevented compared with conventional cross-coupled charge pump with internal pumping capacitor. As a result, pumping current of the proposed NBCCP circuit is increased more than conventional cross-coupled charge pump, and a layout area is decreased. A proposed DC-DC converter for TFT-LCD driver IC is designed with $0.18{\mu}m$ triple-well CMOS process and a test chip is in the marking.

High-speed charge pump circuits using weighted-capacitor and multi-path (Weighted-capacitor와 multi-path를 이용한 고속 승압 회로)

  • 김동환;오원석;권덕기;이광엽;박종태;유종근
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.863-866
    • /
    • 1998
  • In this paper two quick boosting charge pump circuits for high-speed EEPROM memory are proposed. In order to improve initial charge transfer efficiency, one uses weighted capacitors where each stage has different clock coupling capacitance, and the other uses a multi-path structure at the first stage. SPICE simulation results show that these charge pumps have improve drising-time characteristics, but their $V_{DD}$ mean currents are increased a little compared with conventioanl charge pumps. The rising time upt o 15V of the proposed charge pumps is 3 times faster than that of dickson's pump at the cost of 1.5 tiems more $V_{DD}$ mean current.rrent.

  • PDF

A Study on the Optimum Design of the Charge Pump PLL with Multi-PFD (다중 위상검출기를 갖는 전하 펌프 PLL의 최적 설계에 관한 연구)

  • Jang, Young-Min;Kang, Kyung;Woo, Young-shin;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.271-274
    • /
    • 2001
  • In this paper, we propose a charge pump phase-locked loop (PLL) with multi-PFD which is composed of a sequential phase frequency detector(PFD) and a precharge PFD. When the Phase difference is within - $\pi$$\pi$ , operation frequency can be increased by using precharge PFD. When the phase difference is larger than │ $\pi$ │, acquisition time can be shorten by the additional control circuit with increased charge pump current. Therefore a high frequency operation, a fast acquisition and an unlimited error detection range can be achieved.

  • PDF

A Study on the Optimum Design of Charge Pump PLL for High Speed and Fast Acquisition (고속동작과 빠른 Acquisition 특성을 가지는 Charge Pump PLL의 최적설계에 관한 연구)

  • Woo, Young-Shin;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.718-720
    • /
    • 1999
  • This paper describes a charge pump PLL architecture which achieves high frequency operation and fast acquisition. This architecture employs multi-phase frequency detector comprised of precharge type phase frequency detector and conventional phase frequency detector. Operation frequency is increased by using precharge type phase frequency detector when the phase difference is small and acquisition time is shortened by using conventional phase frequency detector and increased charge pump current when the phase difference is large. By virtue of this multi-phase frequency detector structure, the maximum operating frequency of 694MHz at 3.0V and faster acquisition were achieved by simulation.

  • PDF

Complementary Dual-Path Charge Pump with High Pumping Efficiency in Standard CMOS Logic Technology (상보형 전하이동 경로를 갖는 표준 CMOS 로직 공정용 고효율 전하펌프 회로)

  • Lee, Jung-Chan;Chung, Yeon-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.80-86
    • /
    • 2009
  • In this paper, we present a new charge pump circuit feasible for the implementation with standard twin-well CMOS process technology. The proposed charge pump employs PMOS-switching dual charge-transfer paths and a simple two-phase clock. Since charge transfer switches are fully turned on during each half of clock cycle, they transfer charges completely from the present stage to the next stage without suffering threshold voltage drop. During one clock cycle, the pump transfers charges twice through two pumping paths which are operating alternately. The performance comparison by simulations and measurements demonstrates that the proposed charge pump exhibits the higher output voltage, the larger output current and a better power efficiency over the traditional twin-well charge pumps.

Improved Passive Power Factor Correction Circuits of Electronic Ballasts for fluorescent lamps (형광등용 전자식 안정기에 적합한 수동 역률개선회로의 제안 및 특성 개선에 관한 연구)

  • Chae, Gyun;Ryoo, Tae-Ha;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2795-2797
    • /
    • 1999
  • Several power factor correction(PFC) circuits are presented to achieve high PF electronic ballast for both voltage-fed and current-fed electronic ballast. The proposed PFC circuits use valley-fill(VF) type DC-link stages modified from the conventional VF circuit to adopt the charge pumping method for PFC operations during the valley intervals. In voltage-fed ballast, charge pump capacitors are connected with the resonant capacitors. In current-fed type, the charge pump capacitors are connected with the additional secondary-side of the power transformer. The measured PF and THD are higher than 0.99 and 15% for all proposed PFC circuits. The lamp current CF is also acceptable in the proposed circuits. The proposed circuit is suitable for implementing cost-effective electronic ballast.

  • PDF