• Title/Summary/Keyword: Charge/discharge cycle

Search Result 277, Processing Time 0.024 seconds

The Electrochemical Characterization of$LiMn_{2-y}M_yO_4$ Cathode Material - II. Charge and Discharge Property and Cyclic Voltametry of $LiMn_{2-y}M_yO_4$ (M=Zn, Mg) ($LiMn_{2-y}M_yO_4$ 정극 활물질의 전기화학적 특성 - II. $LiMn_{2-y}M_yO_4$ (M=Zn, Mg)의 충방전 및 순환전위전류 특성)

  • 정인성;김종욱;구할본;김형곤;손명모;박복기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.316-322
    • /
    • 2001
  • Cathode materials $LiMn_{2-y}$$M_{y}$ $O_4$(M=Zn and Mg) were obtained by reacting the mixture of LiOH.$H_2O$, Mn $O_2$ and MgO ar ZnO at 80$0^{\circ}C$ for 36h in an air atmosphere. These materials showed an extended cycle life in lithium-anode cells working at room temperatue in a 3.0 to 4.3V potential window. Among these materials, LiM $n_{1.9}$M $g_{0.1}$ $O_4$ showed the best cycle performance in terms of the capacity and cycle life. The discharge capacities of the cathode for the Li/LiM $n_{1.9}$ $M_{0.1}$ $O_4$ cell at the 1st cycle and at the 70th cycle were about 120 and 105mAh/g, respectively. This cell capacity is retained by 88% after 70th cycle. In cyclic voltammetry measurement, all cells revealed tow oxidation peaks and reduction peaks. However, Li/$LiMn_{2-y}$$M_{y}$ $O_4$ cell substituted with Zn and Mg showed new reaction peak during reduction reaction.eaction.ion.ion.

  • PDF

Charge-discharge behaviour of $LiNi_{0.85}Co_{0.15}O_2>/MPCF$ cell ($LiNi_{0.85}Co_{0.15}O_2/MPCF$전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.25-28
    • /
    • 1998
  • Lithiated cobalt and nickel oxides are becoming very attractive as active cathode materials for secondary lithium ion secondary battery. $LiCoO_2$ is easily synthesized from lithium cobalt salts, but has a relatively high oxidizing potential on charge. LiNiOz is synthesized by a more complex procedure and its nonstoichiometry significantly degraded the charge-discharge characteristics. But $LiNiO_2$ has a lower charge potential which increases the system stability. Lithiated cobalt and nickel oxides are iso-structure which make the preparation of solid solutions of $LiNi_{1-x}Co_xO_2$ for O$LiCoO_2 and LiNiO_2$ electrode. The aim of the presentb paper is to study the electrochemical behaviour, as weU as the possibilities for practical application of layered Iithiated nickel oxide stabilized by $Co^{3+}$ substitution as active cathode materials in lithium ion secondary battery.

  • PDF

Effect Of Substituted-Fe for the Charge-discharge behavior Of $LiMn_{2}O_{4}$cathode materials (Fe 치환이$LiMn_{2}O_{4}$정극 활물질의 충방전 특성에 미치는 영향)

  • 정인성;김민성;구할본;손명모;이헌수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.548-551
    • /
    • 2000
  • Spinel phase LiF $e_{y}$M $n_{2-y}$ $O_4$samples are synthesized by calcining a LiOH.$H_2O$, Mn $O_2$and F $e_2$ $O_3$mixture at 80$0^{\circ}C$ for 36h in air. Preparing LiF $e_{y}$M $n_{2-y}$ $O_4$showed spinel phase with cubic phase. The ununiform distortion of the crystallite of the spinel LiF $e_{y}$M $n_{2-y}$ $O_4$was more stable than that of the pure. The discharge capacity of the cathode for the Li/LiF $e_{0.1}$M $n_{1.9}$ $O_4$cell at the first than that of the pure. The discharge capacity of the cathode for the Li/LiF $e_{0.1}$M $n_{1.9}$ $O_4$cell at the first cycle and at the 70th cycle was about 113 and 90mAh/g, respectively. This cell capacity was retained about 82% of the first cycle after 70th cycle. Impedance profile of this cell was more stable than that pure. The resistance, the capacitance and chemical diffusion coefficients of lithium ion showed approximately 80$\Omega$, 36133.87$\mu$F ; 1.4$\times$10$^{-8}$ c $m^2$ $s^{-1}$ , respectively. , respectively.ely.

  • PDF

A Study on the Impedance Characteristics and Mechanisms of Li Intecalation on the Tin Oxide-flyash Composite Electrodes (Tin Oxide-flyash Composite 전극의 리튬 이온 Intercalation 메카니즘과 임피던스 특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Jong-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1224-1229
    • /
    • 2004
  • The purpose of this study is to research and develop tin oxide-flyash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry, AC impedance and charge/discharge cycling of SnO$_2$-flyash/SPE/Li cells. The first discharge capacity of SnO$_2$-flyash composite anode was 639 mAh/g. The discharge capacity of SnO$_2$-flyash composite anode was 563 and 472 mAh/g at 6th and 15th cycle, respectively. The SnO$_2$-flyash composite anode with PVDF-PMMA-PC-EC-LiClO$_4$ electrolyte showed good capacity with cycling.

Evaluation and monitoring of degradation mechanism of Li-ion battery for portable electronic device (휴대전자기기용 저용량 리튬이온 배터리의 충방전 열화 기구 분석 및 모니터링)

  • Byeon, Jai Won
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.129-140
    • /
    • 2013
  • As a fundamental experimental study for reliability improvement of lithium ion secondary battery, degradation mechanism was investigated by microscopic observation and acoustic emission monitoring. Microstructural observation of the decomposed battery after cycle test revealed mechanical and chemical damages such as interface delamination, microcrack of the electrodes, and solid electrolyte interphase (SEI). Acoustic emission (AE) signal was detected during charge and discharge of lithium ion battery to investigate relationships among cumulative count, discharge capacity, and microdamages. With increasing number of cycle, discharge capacity was decreased and AE cumulative count was observed to increase. Observed damages were attributed to sources of the detected AE signals.

Experimental Study on the Heating Performance of a Variable Speed CO2 Heat Pump with a Variation of Operating Conditions (가변속 이산화탄소 열펌프의 난방성능 특성에 관한 실험적 연구)

  • Cho, Hong-Hyun;Lee, Ho-Sung;Jang, Yong-Hee;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.694-701
    • /
    • 2007
  • The applications of a transcritical $CO_2$ cycle into water heaters show advantages over conventional systems in the respect of power consumption and heating efficiency because the $CO_2$ cycle has a high compressor discharge temperature. Besides, the heating performance of the transcritical $CO_2$ cycle can be improved by optimizing operating conditions. In this study, the heating performance of a variable speed $CO_2$ heat pump was measured and analyzed by varying refrigerant charge amount, EEV opening, compressor frequency and outdoor temperature. As a result, the optimum normalized charge for heating was 0.226. The COPs at the compressor frequencies of 40, 50 and 60 Hz were 2.94, 2.75 and 2.25, respectively. The heating performance of the $CO_2$ cycle with charge amount was more sensitive than the cooling performance. Moreover, the heating performance was improved significantly by optimizing of compressor frequency and EEV opening.

Preparation and Analysis of$LiMn_2O_4$ Cathode Material substituted Mg and Zn (Mg와 Zn이 치환된 $LiMn_2O_4$ 정극 활물질의 제조 및 특성 분석)

  • Jeong, In-Seong;Gu, Hal-Bon;Han, Kyoo-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.707-710
    • /
    • 2002
  • Spinel $LiMn_2O_4$ and $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4$ powders were synthesized by solid-state method at $800^{\circ}C$ for 36h. Crystal structure and electrochemical properties were analyzed by X-ray diffraction, charge-discharge test, cyclic voltammetry and ac impedance to $LiMn_2O_4$ and $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$. All cathode material showed spinel structure in X-ray diffraction. $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cell substituted $Mg^{2+}$ and $Zn^{2+}$ showed excellent discharge capacities than other cells, which it presented about 120mAh/g at the 1st cycle and about 73mAh/g at the 250th cycle, respectively. AC impedance of $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cells showed the similar resistance of about $65{\sim}110{\Omega}$ before cycling.

  • PDF

A Study on the Electrode Charcteristics of the Fluornated AB$_2$ Type Hydrogen Storage Alloys (불화 처리된 AB$_2$계 수소저장합금의 전극특성에 관한 연구)

  • 박호영;이명호;조원일;조병래;이성래;주재백;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.262-271
    • /
    • 1997
  • Nickel-matal hydride(Ni-MH) batteries are receiving attention as non-pollunting. high performance rehargeable energy stoage system. The performance of Ni-Mh is significantly influenced by the hydrogen storage alloy materiels used as an anode material. Recently, having discharge capacities higher than the $AB_5$-type hydrogen storage alloys, the Zr-based $AB_2$-Type hydrogen storage alloys has remaining problems regarding cycle life and self-dischareg. These problems need to be solved by improvements in the alloy design and/or surface treatment. This work investiggates the effects the effects of surface property by fluorination on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni{1.2}$ composittion $AB_2$-Type hydrogen storage alloys. EPMA, SEM and AES techniques were used for surface analysis, and the crystal structure was characterized by constant current cycling test and potential sweep methods. Fluorination was found to be effective when La-was incorporated into the alloy, and has unique morphology, higher reactivity, and at the same time formed a protective film. Through, fluorination, the cycle life of an electrode was found to increase significantly, charge/discharge characteristics of the electrode the potential difference between the charge/discharge plateau, i.e polarization(overpotential)were improved.

  • PDF

Crystallization and charg-discharge properties of $Li_2O-P_2O_5-V_2O_5$-gless as Cathode material (정극재료로서 $Li_2O-P_2O_5-V_2O_5$ 유리의 결정화와 충방전 특성)

  • Son, Myeng-Mo;Lee, Heon-Su;Song, Hee-Woong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.157-159
    • /
    • 2000
  • Vanadate glass in the $Li_2O-P_2O_5-V_2O_5$ system with 60mol% $V_2O_5$ was prepared by melting the bath in pt. crucible followed by quenching on the copper plate. We found that $Li_2O-P_2O_5-V_2O_5$ glass ceramics obtained from nucleation of $Li_2O-P_2O_5-V_2O_5$ glass showed significantly higher capacity and longer cycle life than conventionally made crystalline $LiV_3O_8$. In the present paper, We describe the charge/discharge properties during crystallization process and find the best crystallization condition of $Li_2O-P_2O_5-V_2O_5$ glass as cathode material. The Charge and discharge capacity of $Li_2O-P_2O_5-V_2O_5$ glass was about 220mAh/g for the cell heat-treated at $250^{\circ}C$ for 2.5hr.

  • PDF