• Title/Summary/Keyword: Charge/discharge

Search Result 1,334, Processing Time 0.032 seconds

Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery (리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과)

  • Choi, Na Hyun;Kim, Eun Bi;Yeom, Tae Ho;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.327-333
    • /
    • 2022
  • In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.

Electric vehicle battery remaining capacity analysis method using cell-to-cell voltage deviation (셀간 전압 편차를 활용한 전기자동차 배터리 잔존용량 분석 기법)

  • Gab-Seong Cho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.54-65
    • /
    • 2023
  • Due to the nature of electric vehicles, the batteries used for electric vehicles have a very large rated capacity. If an electric vehicle runs for a long time or an electric vehicle is abandoned due to a traffic accident, the electric vehicle battery becomes a waste battery. Even in vehicles that are being abandoned, the remaining capacity of waste batteries for electric vehicles is sufficient for other purposes. Waste batteries for automobiles are very expensive, so they need to be recycled and reused, but there was a problem that the standards for measuring the performance grade of waste batteries for recycling and reuse were insufficient. As a method for measuring the remaining capacity of waste battery, the most stable and reliable method is to measure the remaining capacity of battery using full charge and discharge. However, the inspection method by the full charging and discharging method varies depending on the capacity of the battery, but it takes more than a day to inspect, and many people are making great efforts to solve this problem. In this paper, an electric vehicle battery residual capacity analysis technique using voltage deviation between cells was studied and analyzed as a method to reduce inspection time for electric vehicle batteries. To this end, a full charging and discharging-based capacity measurement system was constructed, experimental data were collected using a nose or waste battery, and the correlation between the voltage deviation and the remaining capacity of the battery pack was analyzed to verify whether it can be used for battery inspection.

  • PDF

The Study on Control Algorithm of Elevator EDLC Emergency Power Converter (승강기 EDLC 비상전원 전력변환장치 제어 알고리즘 연구)

  • Lee, Sang-min;Kim, IL-Song;Kim, Nam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.709-718
    • /
    • 2017
  • The installation of the elevator ARD(Automatic Rescue Device) system has been forced into law in these days in order to safely rescue passengers during power failure. The configuration of the ARD system consists of energy storage device, power converter and control systems. The EDLC(Electric Double Layer Capacitor) are used as energy storage device for rapid charge/discharge purposes. The power conditioning system (PCS) consists of bi-directional converter, 3-phase converter and control system. The dead-beat control system is adopted for most systems however it requires complex mathematical calculations, the high performance microprocessors are mandatory and thus it can be a cause of high manufacturing cost. In this paper the new control method for average current mode control is presented for simple structure. The control algorithm is applied to the single phase system and then expands to three phase system to meet the sysem requirements. The mathematical modeling using average modeling method is presented and analysed by PSIM computer simulation to verifie the validity of the proposed control methods.

Molecular Design of Water-dispersed Polymer Binder with Network Structure for Improved Structural Stability of Si-based Anode (실리콘 기반 음극의 구조적 안전성 향상을 위한 가교 구조를 가지는 수분산 고분자 바인더의 분자 구조 설계)

  • Eun Young Lim;Eunsol Lee;Jin Hong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.309-315
    • /
    • 2024
  • Silicon and carbon composite (SiC) is considered one of the most promising anode materials for the commercialization of Si-based anodes, as it could simultaneously satisfy the high theoretical capacity of Si and the high electronic conductivity of carbon. However, SiC active material undergoes repeated volumetric changes during charge/discharge processes, leading to continuous electrolyte decomposition and capacity fading, which is still considered an issue that needs to be addressed. To solve this issue, we suggest a 4,4'-Methylenebis(cyclohexyl isocyanate) (H12MDI)-based waterborne polyurethane binder (HPUD), which forms a 3D network structure through thermal cross-linking reaction. The cross-linked HPUD (denoted as CHPU) was prepared using an epoxy ring-opening reaction of the cross-linker, triglycidyl isocyanurate (TGIC), via simple thermal treatment during the SiC anode drying process. The SiC anode with the CHPU binder, which exhibited superior mechanical and adhesion properties, not only demonstrated excellent rate and cycling performance but also alleviated the volume expansion of the SiC anode. This work implies that eco-friendly binders with cross-linked structures could be utilized for various Si-based anodes.

Physical Properties of Cd2GeSe4 and Cd2GeSe4:Co2+ Thin Films Grown by Thermal Evaporation (진공증착법에 의해 제작된 Cd2GeSe4와 Cd2GeSe4:Co2+ 박막의 물리적 특성)

  • Lee, Jeoung-Ju;Sung, Byeong-Hoon;Lee, Jong-Duk;Park, Chang-Young;Kim, Kun-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.459-467
    • /
    • 2009
  • $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were prepared on indium-tin-oxide(ITO)-coated glass substrates by using thermal evaporation. The crystallization was achieved by annealing the as-deposited films in flowing nitrogen. X-ray diffraction spectra showed that the $Cd_2GeSe_4$ and the $Cd_2GeSe_4:Co^{2+}$ films were preferentially grown along the (113) orientation. The crystal structure was rhomohedral(hexagonal) with lattice constants of $a=7.405\;{\AA}$ and $c=36.240\;{\AA}$ for $Cd_2GeSe_4$ and $a=7.43\;{\AA}$ and $c=36.81\;{\AA}$ for $Cd_2GeSe_4:Co^{2+}$ films. From the scanning electron microscope images, the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were plated, and the grain size increased with increasing annealing temperature. The optical energy band gap, measured at room temperature, of the as-deposited $Cd_2GeSe_4$ films was 1.70 eV and increased to about 1.74 eV and of the as-deposited $Cd_2GeSe_4:Co^{2+}$ films was 1.79 eV and decreased to about 1.74 eV upon annealing in flowing nitrogen at temperatures from $200^{\circ}C$ to $500^{\circ}C$. The dynamical behavior of the charge carriers in the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were investigated by using the photoinduced discharge characteristics technique.

Electrochemical Performance of CB/SiOx/C Anode Materials by SiOx Contents for Lithium Ion Battery (SiOx 함량에 따른 CB/SiOx/C 음극재의 전기화학적 특성)

  • Kim, Kyung Soo;Kang, Seok Chang;Lee, Jong Dae;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.117-123
    • /
    • 2021
  • In this study, the composite was prepared by mixing SiOx, soft carbon, and carbon black and the electrochemical properties of lithium ion battery were investigated. The content of SiOx added to improve the capacity of the soft carbon anode material was varied to 0, 6, 8, 10, 20 wt%, and carbon black was added as a structural stabilizer for reducing the volume expansion of SiOx. The physical properties of prepared CB/SiOx/C composite were investigated through XRD, SEM, EDS and powder resistance analysis. In addition, the electrochemical properties of prepared composite were observed through the charge/discharge capacity, rate and impedance analysis of the lithium ion battery. The prepared CB/SiOx/C composite had an inner cavity capable of mitigating the volume expansion of SiOx by adding carbon black. The formed internal cavity showed a low initial efficiency when the SiOx content was less than 8 wt%, and low cycle stability when the content of SiOx was less than 20 wt%. The CB/SiOx/C composite containing 10 wt% of SiOx showed an initial discharge capacity of 537 mAh/g, a capacity retention rate of 88%, and a rate of 79 at 2C/0.1C. SiOx was added to improve the capacity of the soft carbon anode material, and carbon black was added as a structural stabilizer to buffer the volume change of SiOx. In order to use the CB/SiOx/C composite as a high-efficiency anode material, the mechanism of the optimal SiOx and the use of carbon black as a structural stabilizer was discussed.

A Study on Differences of Opinions on Home Health Care Program among Physicians, Nurses, Non-medical personnel, and Patients. (가정간호 사업에 대한 의사, 간호사, 진료관련부서 직원 및 환자의 인식 비교)

  • Kim, Y.S.;Lim, Y.S.;Chun, C.Y.;Lee, J.J.;Park, J.W.
    • The Korean Nurse
    • /
    • v.29 no.2
    • /
    • pp.48-65
    • /
    • 1990
  • The government has adopted a policy to introduce Home Health Care Program, and has established a three stage plan to implement it. The three stage plan is : First, to amend Article 54 (Nurses for Different Types of Services) of the Regulations for Implementing the Law of Medical Services; Second, to tryout the new system through pilot projects established in public hospitals and clinics; and third, to implement at all hospitals and equivalent medical institutions. In accordance with the plan, the Regulation has been amend and it was promulgated on January 9,1990, thus establishing a legal ground for implementing the policy. Subsequently, however, the Medical Association raised its objection to the policy, causing a delay in moving into the second stage of the plan. Under these circumstances, a study was conducted by collecting and evaluating the opinions of physicians, nurses, non-medical personnel and patients on the need and expected result from the home health care for the purpose of help facilitating the implementation of the new system. As a result of this study, it was revealed that: 1. Except the physicians, absolute majority of all other three groups - nurses, non-medical personnel and patients -gave positive answers to all 11 items related to the need for establishing a program for Home Health Care. Among the physicians, the opinions on the need for the new services were different depending on their field of specialty, and those who have been treating long term patients were more positive in supporting the new system. 2. The respondents in all four groups held very positive view for the effectiveness and the expected result of the program. The composite total of scores for all of 17 items, however, re-veals that the physicians were least positive for the- effectiveness of the new system. The people in all four groups held high expectation on the system on the ground that: it will help continued medical care after the discharge from hospitals; that it will alleviate physical and economic burden of patient's family; that it will offer nursing services at home for the patients who are suffering from chronic disease, for those early discharge from hospital, or those who are without family members to look after the patients at home. 3. Opinions were different between patients( who will receive services) and nurses (who will provide services) on the types of services home visiting nurses should offer. The patients wanted "education on how to take care patients at home", "making arrangement to be admitted into hospital when need arises", "IV injection", "checking blood pressure", and "administering medications." On the other hand, nurses believed that they can offer all 16 types of services except "Controlling pain of patients", 4. For the question of "what types of patients are suitable for Home Health Care Program; " the physicians, the nurses and non-medical personnel all gave high score on the cases of "patients of chronic disease", "patients of old age", "terminal cases", and the "patients who require long-term stay in hospital". 5. On the question of who should control Home Health Care Program, only physicians proposed that it should be done through hospitals, while remaining three groups recommended that it should be done through public institutions such as public health center. 6. On the question of home health care fee, the respondents in all four groups believed that the most desireable way is to charge a fixed amount of visiting fee plus treatment service fee and cost of material. 7. In the case when the Home Health Care Program is to be operated through hospitals, it is recommended that a new section be created in the out-patient department for an exclusive handling of the services, instead of assigning it to an existing section. 8. For the qualification of the nurses for-home visiting, the majority of respondents recommended that they should be "registered nurses who have had clinical experiences and who have attended training courses for home health care". 9. On the question of if the program should be implemented; 74.0% of physicians, 87.5% of non-medical personnel, and 93.0% of nurses surveyed expressed positive support. 10. Among the respondents, 74.5% of -physicians, 81.3% of non-medical personnel and 90.9% of nurses said that they would refer patients' to home health care. 11. To the question addressed to patients if they would take advantage of home health care; 82.7% said they would if the fee is applicable to the Health Insurance, and 86.9% said they would follow advises of physicians in case they were decided for early discharge from hospitals. 12. While 93.5% of nurses surveyed had heard about the Home Health Care Program, only 38.6% of physicians surveyed, 50.9% of non-medical personnel, and 35.7% of patients surveyed had heard about the program. In view of above findings, the following measures are deemed prerequisite for an effective implementation of Home Health Care Program. 1. The fee for home health care to be included in the public health insurance. 2. Clearly define the types and scope of services to be offered in the Home Health Care Program. 3. Develop special programs for training nurses who will be assigned to the Home Health Care Program. 4. Train those nurses by consigning them at hospitals and educational institutions. 5. Government conducts publicity campaign toward the public and the hospitals so that the hospitals support the program and patients take advantage of them. 6. Systematic and effective publicity and educational programs for home heath care must be developed and exercises for the people of medical professions in hospitals as well as patients and their families. 7. Establish and operate pilot projects for home health care, to evaluate and refine their programs.

  • PDF

Effects of Calcinations Temperature on the Electrochemical Properties of Li[Ni0.6Co0.2Mn0.2]O2 Lithium-ion Cathode Materials (리튬 이차전지용 양극활물질 Li[Ni0.6Co0.2Mn0.2]O2의 소성 온도가 전기화학적 특성에 미치는 영향)

  • Yoo, Gi-Won;Jeon, Hyo-Jin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • Using $Na_2CO_3$ and $MeSO_4$ (Me = Ni, Co and Mn) as starting materials, the precursor of $[Ni_{0.6}Co_{0.2}Mn_{0.2}]CO_3$ has been synthesized by carbonate co-precipitation. The precursor was mixed with $Li_2CO_3$, and calcined at 750, 850, and$950^{\circ}C$ in air. Effect of calcinations temperature on characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ cathode materials was investigated. The structure and characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ were determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrochemical measurements. The X-ray diffraction (XRD) results show that the intensity ratio of $I_{(003)}/I_{(104)}$ increased and the R-factor ratio decreased with the increase of calcinations temperature. And Scanning electron microscopy (SEM) result show that the primary particle size increased. Especially, the $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ calcined at $950^{\circ}C$ for 24 H shows excellent electrochemical performances with reversible specific capacity of $165.3mAhg^{-1}$ [cut-off voltage 2.5~4.3 V, 0.1 C($17mAhg^{-1}$)] and good capacity retention of 95.4% after 50th charge/discharge cycles[cut-off voltage 2.5~4.3 V, 1 C($170mAhg^{-1}$)].

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide (다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구)

  • Lee, Jong-Moon;Kim, Joo-Seong;Hong, Soon-Kie;Lee, Jeong-Jin;Ahn, Han-Cheol;Cho, Won-Il;Mho, Sun-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.172-180
    • /
    • 2012
  • The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.

Improved Electrochemical Performance and Minimized Residual Li on LiNi0.6Co0.2Mn0.2O2 Active Material Using KCl (KCl을 사용한 LiNi0.6Co0.2Mn0.2O2계 양극활물질의 잔류리튬 저감 및 전기화학특성 개선)

  • Yoo, Gi-Won;Shin, Mi-Ra;Shin, Tae-Myung;Hong, Tae-Whan;Kim, Hong-kyeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Using a precursor of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ as a starting material, a surface-modified cathode material was obtained by coating with KCl, where the added KCl reduces residual Li compounds such as $Li_2CO_3$ and LiOH, on the surface. The resulting electrochemical properties were investigated. The amounts of $Li_2CO_3$ and LiOH decreased from 8,464 ppm to 1,639 ppm and from 8,088 ppm to 6,287 ppm, respectively, with 1 wt% KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ that had been calcined at $800^{\circ}C$. X-ray diffraction results revealed that 1 wt% of KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ did not affect the parent structure but enhanced the development of hexagonal crystallites. Additionally, the charge transfer resistance ($R_{ct}$) decreased dramatically from $225{\Omega}$ to $99{\Omega}$, and the discharge capacity increased to 182.73mAh/g. Using atomic force microscopy, we observed that the surface area decreased by half because of the exothermic heat released by the Li residues. The reduced surface area protects the cathode material from reacting with the electrolyte and hinders the development of a solid electrolyte interphase (SEI) film on the surface of the oxide particles. Finally, we found that the introduction of KCl into $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ is a very effective method of enhancing the electrochemical properties of this active material by reducing the residual Li. To the best of our knowledge, this report is the first to demonstrate this phenomenon.