The purpose of this study was to identify the negative factors affecting personnel u-Learning acceptance and to analyze the interrelation among the factors in this research model. The two independent variables avoidable convenience and reliant convenience, based on pilot test results, and learning performance and perceived interactivity, based on the relevant literature, are used to examine the research model. The research problem was tested with data collected from 577 respondents in 23 universities. This study developed and empirically analyzed a model representing the relationship by using the Structural Equation Model. The major findings of this study are, firstly, that the higher reliant convenience is negatively affecting the degree of system use and learner’s satisfaction, whereas avoidable convenience is only affecting the learner’s satisfaction. Secondly, the higher learning performance and stronger perceived interactivity affects the degree of system use as well as learner’s satisfaction. Finally, the degree of system use affects the learner’s satisfaction.
많은 기존의 E-러닝은 SCORM과 LMS를 연동하고 있다. 또한 U-러닝은 E-러닝의 하나의 트랜드로 연구되고 있다. 그러나 U-러닝에서 기존의 SCORM과 LMS를 연동하는 방안에 대해서는 매우 미흡하게 제시되고 있다. 본 연구는 기존의 SCORM과 LMS를 연동한 U-러닝 프레임워크를 제안하고자 한다. U-러닝에서 사용하는 각기 다른 모바일 기기의 특성을 반영하기 위하여 모바일 기기 변환모듈과 학습객체 재구성 모듈을 이용하였다. 특히 모바일 기기 정보는 모바일 기기 메타데이터를 사용하여 저장하고 관리하였다.
유비쿼터스 시대에서 새로운 교육형태인 유러닝(Ubiquitous Learning: U-learning)은 언제(Anytime) 어디서나(Anywhere) 어떠한 형태의 네트워크를 이용하여(Any Network) 어떠한 단말기로도(Any Device) 정보의 전달이 가능한 새로운 교육형태이다. 유러닝은 무선인터넷과 휴대단말기의 발달과 더불어 더욱 진화되고 있으며, 대중화되고 있다. 유러닝 지원시스템(U-learning Support System: ULSS)은 유러닝을 지원하는 포괄적인 시스템이다. 한편 최근들어 스마트폰(Smart Phone도 급속히 대중화되고 있으며, 교육 분야의 활용에도 각광을 받고 있다. 본 논문에서는 스마트폰 환경에서의 유러닝지원시스템을 정의한다.
정보통신기술이 급변함에 따라 교육에 대한 패러다임도 변화되고 있다. 최근 PDA, 태블릿 PC, 휴대전화 단말기 등의 개별화 정보기기를 통해 언제 어디서나 학습이 가능한 u-러닝이 도입되고 있다. u-러닝에서 개별화 정보기기의 이동성과 개인성 등을 이용한다면 시간과 공간의 제약 없이 학습자 개인의 특성에 적합한 맞춤형 학습을 가능하게 하고, 상황학습과 체험학습에도 효과적이게 될 것이다. 본 연구에서는 PDA의 교수-학습에의 활용 방안과 PDA 활용 교수-학습 기초 모델을 모색하고자 PDA를 직접 수업에 적용하고 그 효과를 알아보았다. 그 결과 PDA를 활용한 수업에 대하여 대부분 만족스럽다는 응답을 얻었으나, 접속의 문제, PDA용 콘텐츠의 부족, 화질의 문제 등이 개선되어야 할 점으로 지적되었다.
제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
/
pp.123-126
/
1995
Characteristics of control system design using Universal Learning Network (U.L.N.) are that a system to be controlled and a controller are both constructed by U.L.N. and that the controller is best tuned through learning. U.L.N has the same generalization ability as N.N.. So the controller constructed by U.L.N. is able to control the system in a favorable way under the condition different from the condition of the control system in learning stage. But stability can not be realized sufficiently. In this paper, we propose a robust control method using U.L.N. and second order derivatives of U.L.N.. The proposed method can realize better performance and robustness than the commonly used Neural Network. Robust control considered here is defined as follows. Even though initial values of node outputs change from those in learning, the control system is able to reduce its influence to other node outputs and can control the system in a preferable way as in the case of no variation. In order to realize such robust control, a new term concerning the variation is added to a usual criterion function. And parameter variables are adjusted so as to minimize the above mentioned criterion function using the second order derivatives of criterion function with respect to the parameters. Finally it is shown that the controller constricted by the proposed method works in an effective way through a simulation study of a nonlinear crane system.
종래에 헬스케어 영역에서 주로 사용해왔던 기계학습 기법을 U-health 서비스 분석단계에 적용하기에는 여러 가지 문제점들이 있다. 첫째, 아직 U-health 분야의 연구가 초기단계에 불과하여 기존의 기법들을 U-health 환경에 적용한 사례가 매우 부족하다. 둘째, 기계학습 기법은 학습시간이 많이 소요되기 때문에 실시간으로 질환을 관리해야만 하는 U-health 서비스 환경에는 적용하기 어렵다. 셋째, 그동안 다양한 기계 학습 기법들이 제시되었으나 질환 연관변수에 가중치를 부여할 수 있는 방법이 없어, 개인 맞춤형 질병예측 시스템으로 구축할 수 없는 한계를 가진다. 본 논문에서는 이러한 문제점들을 개선하고, U-health 서비스 시스템의 바이오 데이터 분석 과정을 프로세스로 해석하기 위하여, 개인 맞춤형 질병예측 기법인 PCADP를 제안하였다. 또한 이러한 PCADP를 바탕으로 U-health 데이터 및 서비스 명세의 의미 있는 표현을 위하여 U-health 온톨로지 프레임워크를 시멘틱스형으로 모델링하였다. 또한 PCADP 예측 기법은 U-health 환경에서 판별 기법이 갖추어야 할 조건인 유연성과 실시간성이 기존의 방식에 비하여 향상되었고, 판별과정의 모니터링 및 시스템의 지속적인 개선측면에서도 효율적으로 작용함을 확인하였다.
유비쿼터스 사회(Ubiquitous Society)의 핵심기술인 RFID(Radio Frequency Identification)를 물류, 유통, 교통, 의료 등 다양한 분야에서 개발, 적용하는 연구가 활발하게 진행되고 있다. RFID를 이용하여 u-Campus, u-Library 등 유비쿼터스 교육환경을 마련해주는 연구들은 있으나 직접적으로 학습에 적용한 연구는 아직 미미한 실정이다. 따라서 본 연구에서는 RFID 태그와 리더의 무선통신 기술을 이용하여 학습자의 위치와 상황을 인지하고 그에 부합하는 영어 상황학습 서비스를 제공하고자 한다. RFID 시스템을 이용하기 위해 본 연구에서 제안하는 RFID 미들웨어는 기존의 범용 RFID 미들웨어와 달리 PDA 기반에서 동작하는 모바일 RFID 미들웨어로 필수 API를 중심으로 최적화하여 개발하였다.
유비쿼터스는 정보통신 기술과 IT 기술 등이 접목된 새로운 컴퓨팅 환경으로서, PDA를 비롯한 다양한 기기와 여러 분야의 응용기술이 적용되었다. 최근엔 통신 기능과 다양한 IT 기능이 접목되고 휴대성이 좋은 스마트 폰의 출현으로 사용자들의 기기 이용 환경이 변화하고 있다. 이러한 스마트 폰의 활용은 환경의 제약없이 사용자들에게 학습 기기로서의 역할까지로 확장되고 있다. 따라서 본 연구에서는 스마트 폰에서 U-러닝을 제공하기 위하여 SCORM 기반의 메타데이터를 설계하였다. 이를 위하여, 기존의 LMS와 연동된 SCORM을 U-러닝 서버와 스마트 폰 처리 서버를 두어 이를 핸들링 하도록 하였다. 각기 다른 특성을 가지는 스마트 폰의 적용을 위하여 메타데이터에서는 CPU, 화면크기, 메모리 등의 자원 정보를 가지도록 하였으며, 메타데이터 아답터가 이를 처리하도록 하였다.
이 연구는 유러닝 이용 교육에서 신기술의 발전에 따라 나타나는 특정과 문제점들을 사례를 분석하여 연구하였다. 이러한 유비쿼터스 환경에서 인간은 컴퓨터 능력을 갖고 있는 장치와 상호 교류가 가능하며, 유러닝을 통해 학생들은 열린 자세를 갖으며 스스로 공부하는데 동기부여를 갖게 된다. 이는 학습과 의사소통을 효율적으로 할 수 있게 하며, 시간과 비용 에너지를 절약 할 수 있게 한다. 국내 외 사례에서 살펴보았듯이 유러닝의 발전을 도모하기 위해서는 여러 가지 측면에서 고려되어야 할 것이지만, 교육, 학습태도, 관습, 인간관계 등에 있어 현재 보다 훨씬 광범위하게 수집되어 오용되거나 유출되는 문제를 반드시 해결해야 할 분야이다. 이를 위해 법이나 제도 그리고 윤리적 관점에서 고려되어야 할 것으로 본다.
This study proposes a method for forest vegetation monitoring using high-resolution aerial imagery captured by unmanned aerial vehicles(UAV) and deep learning technology. The research site was selected in the forested area of Mountain Dogo, Asan City, Chungcheongnam-do, and the target species for monitoring included Pinus densiflora, Quercus mongolica, and Quercus acutissima. To classify vegetation species at the pixel level in UAV imagery based on characteristics such as leaf shape, size, and color, the study employed the semantic segmentation method using the prominent U-net deep learning model. The research results indicated that it was possible to visually distinguish Pinus densiflora Siebold & Zucc, Quercus mongolica Fisch. ex Ledeb, and Quercus acutissima Carruth in 135 aerial images captured by UAV. Out of these, 104 images were used as training data for the deep learning model, while 31 images were used for inference. The optimization of the deep learning model resulted in an overall average pixel accuracy of 92.60, with mIoU at 0.80 and FIoU at 0.82, demonstrating the successful construction of a reliable deep learning model. This study is significant as a pilot case for the application of UAV and deep learning to monitor and manage representative species among climate-vulnerable vegetation, including Pinus densiflora, Quercus mongolica, and Quercus acutissima. It is expected that in the future, UAV and deep learning models can be applied to a variety of vegetation species to better address forest management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.