• Title/Summary/Keyword: Characteristics of saw dust decomposition

Search Result 2, Processing Time 0.018 seconds

Morphological Characteristics of Decomposition and Browning of Oak Sawdust Medium for Ground Bed Cultivation of Lentinula edodes (표고 지면재배용 참나무 톱밥배지의 분해와 갈변의 형태적 특성)

  • Koo, Chang-Duck;Lee, Seon-Jeong;Lee, Hwa-Yong
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This study investigated the internal and external morphological characteristics of decomposition and browning of oak sawdust medium for ground bed cultivation of Lentinula edodes. Within fifty days after L. edodes inoculation, surface hyphae on the bed browned. In 110 days, the fungal hyphae occupied and decomposed wood fibers, vessels and parenchymatous cells from the inside as white profuse hyphal mass was amorphously dissolving the saw dust particles from the outer surface. Most of the white hyphal bed surface became cleanly brown, however, some colony surface became blackened and slimy with contaminating bacteria, hyphae and spores. The brown layer was ca. 0.34 mm thick with highly dense and white hyphal mass beneath, whereas the blackened layer was ca. 1.17 mm thick with shrunken hyphae and less decomposed sawdust particles beneath. The surface hardness of the brown surface was ca. $0.73kgf/cm^2$, soft and resilient, while that of the blackened was ca. $0.91kgf/cm^2$, hard and nonresilient. By 150 days Lentinula edodes mushrooms fruited only on the brown surface and not on the blackened medium.

An Influence of Mixing Material Characteristics on the Composting of Food Waste (음식물쓰레기 퇴비화에서 혼합물 특성이 퇴비화에 미치는 영향)

  • 정준오;권혁구;이장훈
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.22-27
    • /
    • 2002
  • The composting practice has been recognized as the most popular way of controlling food waste and many attempt have been made in the field to establish more efficient and economical process. Some of the efforts are mixing cured compost with sawdust as alternative bulking agent, seeding commercially produced microorganism and/or combination of above. However, verification of such efforts is often restricted because of either the lack of engineering consideration on the limitation of composting facility scales. In this study, the effect of mixing materials in food waste composting was investigated by controlling the combination and the mixing ratio of them. When the cured compost was mixed with saw dust. the decomposition of organic material was proven to be more active by observing the compost temperature, the oxygen (O$_2$) consumption, and the cumulative carbon dioxide ($CO_2$) profile. However, the quantity of compost mix-ing seemed not to influence the reaction as long as the minimum required amount was mixed. The feeding of com-mercially produced microorganism had a tendency to prolong the thermophilic stage, which helped to increase the decomposition but it resulted in composting period. Regardless of the composting condition, bacteria and actinomycetes increased in population as the reaction approached to the end. The population of bacteria and actinomycetes were rel-atively higher than those of fungi and yeast throughout the reaction.