• Title/Summary/Keyword: Characteristics of mixed solvents

Search Result 37, Processing Time 0.025 seconds

Design Standard of Activated Carbon Vessel for the Intermittent Emission Sources of Volatile Organic Compounds (휘발성 유기화합물의 간헐적 배출원에 대한 활성탄 흡착 시스템 설계기준)

  • Lee, Si-Hyun;Lim, Jeong-Whan;Rhim, Young-Jun;Kim, Sang-Do;Woo, Kwang-Je;Son, Mi-Sook;Park, Hee-Jae;Seo, Man-Cheol;Ryu, Seung-Kon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.250-260
    • /
    • 2007
  • It was investigated that the emission characteristics of volatile organic compounds (VOCs) from small and medium companies located on industrial complexes in Metropolitan area. The emission characteristics are intermittent sources in which VOCs emissions are highly depends on the working condition. Optimized ventilation system to improve air quality in working area for the three typical companies were installed. Adsorption characteristics of major VOCs such as MEK, IPA, and toluene emitted front the companies were investigated for design of the activated carbon vessel as a VOCs control facility in each company. Concentration of total hydrocarbon and gas amounts needed to ventilation were also used as a design parameter. Mixed adsorbent to improve adsorption characteristics of problematic solvents like IPA and the design guideline of the activated carbon vessel have been suggested.

Acinetobacter sp. A54에 의한 Arabian Light 원유의 분해

  • Lee, Chang-Ho;Kim, Hee-Sik;Suh, Hyun-Hyo;Choi, Soung-Hun;Oh, Hee-Mock;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.520-526
    • /
    • 1997
  • Bacterial strains which degrade Arabian Light crude oil were isolated by enrichment culture from oil-spilled soil. The strain A54 was finally selected after testing emulsifying activity and oil conversion rate. Strain A54 was identified as a Acinetobacter sp. based on the morphological, biochemical and physiological characteristics. It appears to be highly specialized for growth on Arabian Light crude oil in minimal salts medium since it showed preference for oil or degradation products as substrates for growth. It was found that it could grow on at least fifteen different hydrocarbons. The optimum cultural and environmental conditions were as follows; 25$\circ$C for temperature, 7,5 for pH, 2.0% for NaCl concentration and 2.0% for crude oil concentration. Additionally, the optimal concentration of NH$_{4}$NO$_{3}$, and K$_{2}$HPO$_{4}$, were 12.5 mM and 0.057 mM, respectively. Cell growth and emulsifying activity as a function of time were also determined. Crude oil degradation and the reduction of product peaks were identified by the analysis of remnant oil by gas chromatography. Approximately 63% of crude oil were converted into a form no longer extractable by mixed organic solvents.

  • PDF

Characteristics of CIGS film fabricated by non-vacuum process (비 진공으로 제작한 CIGS 박막 특성)

  • Park, Myoung-Guk;Ahn, Se-Jin;Yoon, Jea-Ho;Gwak, Ji-Hye;Kim, Dong-Hwan;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.19-22
    • /
    • 2009
  • A non-vacuum process for fabrication of $CuIn_xGa_{1-x}Se_2$ (CIGS) absorber layer from the corresponing Cu, In, Ga solution precursors was described. Cu, In, Ga precursor solution was prepared by a room temperature colloidal route by reacting the starting materials $Cu(NO_3)_2$, $InCl_3$, $Ga(NO_3)$ and methanol. The Cu, In, Ga precursor solution was mixed with ethylcellulose as organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of Cu, In, Ga solution with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents and to burn the organic binder material. Subsequently, the resultant CIG/Mo/glass sample was selenized in Se evaporation in order to get a solar cell applicable dense CIGS absorber layer. The CIGS absorber layer selenized at $530^{\circ}C$ substrate temperature for 1h with various metal organic ratio.

  • PDF

Preparation of Nickel Powders by the Reduction of Hydrazine from Diethanolamine Solutions (DEA 용액으로부터 히드라진의 환원 반응에 의한 니켈 분말 제조)

  • Choi, Eun-Young;Lee, Yoon-Bok;Yoon, Suk-Young;Kim, Kwang-Ho;Kim, Sin-Chun;Rhyim, Yaung-Mok;Kim, Hyong-Kuk;Kim, Ynng-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.432-436
    • /
    • 2005
  • Nickel powders synthesized by the reduction of hydrazine of nickel salts fiom diethanolamine(DEA) solution, and investigated the morphological characteristics of nickel powders with the addition of hydrazine, reaction temperature, the composition of mixed solvents. The addition of hydrazine in DEA solution largely affected on size control of nickel powders. Under $N_2H_4/Ni^{2+}$ molar ratio= 1.5 and 2.0 conditions, spherical nickel powders in the submicron range obtained, owing to higher the reduction rate. An increase of temperature increased the size of nickel particles. At $220^{\circ}C$ for 40 min, the nickel powders composed of polyhedral particles with high crystalline in the submicron range. The mixed volume ratio of TEA to DEA affected on the increase of particle size and the inhibition of agglomerate between particles.

Study and Application of the New Stick Make Up Product Using Clay Minerals as Binder & Buffer.

  • Kim, Sang-Je;Shin, Dong-Uk;Cho, Pan-Gu;Jung, Chul-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.97-110
    • /
    • 1999
  • The new stick make-up product was studied by using a gel, which is a viscous complex formed with clay minerals, vitamins A and E and fluorinated liquid polymer with a 1500 molecular weight. The gel cannot be obtained with any random combination of clay minerals and the ingredients described above. It takes the sequential manufacturing method as follows to get this kind of gel. Firstly, clay minerals and liquid polymers have to be pre-mixed in order to saturate the liquid polymers with the clay minerals. Then the on-processed gel has to be finely crystallized. The clay minerals, which are the core elements for this gel, were used as a function of Binder & Buffer and liquid polymer was mixed together for the deterioration of the surface tension of each component and to form a functional film in the gel. This liquid polymer was combined with clay minerals because it is not miscible with most oils and solvents. Waxes have a function of keeping a solid status in the stick. We reduced the usage of waxes by putting clay minerals as buffer in the proportion of 0.5:1 with oil phase. Ceramide takes care of the skin when used regularly and maintains the skin's moisture. Vitamins A and E contribute to preventing skin aging by the activation of skin cells. We could get the stable viscous gel, which has about 80% oil phase using clay minerals and liquid polymer. The crystalline structures of gel were surface-chemically-analyzed using SEM and Image Analyzer and were thermodynamically analyzed using DSC. Surface tension test and softness were done by Rheometer. In the end, these characteristics were verified by consumer panel tests in Seoul, Daegeon and Pusan in Korea and Hokkaido, Osaka and Miyazaki in Japan with correlation to the climate.

  • PDF

Study and Application of the New Stick Make Up Product Using Clay Minerals as Binder & Buffer.

  • Kim, Sang-Je;Shin, Dong-Uk;Cho, Pan-Gu;Jung, Chul-Hee
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.97-110
    • /
    • 1999
  • The new stick make-up product was studied by using a gel, which is a viscous complex formed with clay minerals, vitamins A and I and fluorinated liquid polymer with a 1500 molecular weight. The gel cannot be obtained with any random combination of clay minerals and the ingredients described above. It takes the sequential manufacturing method as follows to get this kind of gel. Firstly, clay minerals and liquid polymers have ·to be pre-mixed in order to saturate the liquid polymers with the clay minerals. Then tile on-processed gel has to be finely crystallized. The clay minerals, which are the core elements for this gel, were used as a function of Binder & Buffer and liquid polymer was mixed together for the deterioration of the surface tension of each component and to from a functional film in the gel. This liquid polymer was combined with clay minerals because it is not miscible with most oils and solvents. Waxes have a function of keeping a solid status in the stick. We reduced the usage of waxes by putting clay minerals as buffer in the proportion of 0.5 : 1 with oil phase. Ceramide takes care of the skin when used regularly and maintains the skin’s moisture. Vitamins A and I contribute to preventing skin’aging by the activation of skin cells. We could get the stable viscous gel, which has about 80% oil phase using clay minerals and liquid polymer, The crystal 1 me structures of gel were surface-chemical1y-analyzed using SEM and Image Analyzer and were thermodynamically analyzed using DSC, Surface tension test and softness were done by Rheometer. In the end, these characteristics were verified by consumer panel tests in Seoul, Baegeon and Pusan in Korea and Hokkaido, Oska and Miyazaki in Japan with correlation to the climate.

  • PDF

Synthesis and Characterization of Swallow-Tail Perylene Bisimide as Organic Phosphor for Hybrid LED (Hybrid LED용 유기 형광체로서의 Swallow-Tail Perylene Bisimide 제조 및 특성 연구)

  • Jung, Sung Bong;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.86-92
    • /
    • 2019
  • Although perylene bisimide derivatives have advantages such as excellent thermal stability and high luminance efficiency, they have poor solubility characteristics in organic solvents. In this research, in order to improve the solubility characteristics, we prepared perylene bisimide derivatives (1C) and (2C) with swallow-tail substituted imide, which is known to lead to excellent solubility. The structures and properties of swallow-tail perylene bisimide (1C) and (2C) were analyzed by $^1H-NMR$, FT-IR, UV/Vis spectroscopy, and thermogravimetric analysis (TGA). The maximum absorption wavelengths of (1C) and (2C) in the UV/Vis spectrum were 558 nm and 556 nm, respectively, and the maximum emission wavelengths were 602 nm and 600 nm, respectively. In the TGA, (1C) demonstrated good thermal stability with less than 5 wt% weight loss up to $242^{\circ}C$. In the solubility test, (1C) and (2C) exhibited solubilities of more than 5 wt% in chloroform, ethyl acetate, and dimethylformamide, but not in methanol. When the compounds (1C) and (2C) were mixed with PMMA (polymethyl methacrylate), thin films showed peaks at 679 nm and 677 nm, respectively, in the photoluminescence spectra. (1C) was found to be a possible candidate as red organic phosphor for hybrid LEDs.

Characteristics of Workers'Exposure Concentration and Daily Variations to Organic Solvents in Shipbuilding Painting Processes (조선소 도장작업 노동자 유기용제 노출과 일간 변이)

  • Ahn, Jinsoo;Park, Dooyong;Kang, Taesun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.4
    • /
    • pp.488-499
    • /
    • 2019
  • Objectives: This study was conducted to identify the characterization of organics solvent exposure among painting workers in the shipbuilding painting process, especially for their daily variations(within worker variance). Methods: Charcoal passive dosimeters were worn throughout each work shift for 20 days for five painting workers from October 19 to November 26, 2015. A total of 100 samples were collected, analyzed and compared with statutory workplace environmental measurements. Results: The geometric mean(GM) and geometric standard deviation(GSD) of mixed organic solvent(six substances) exposure index(EI) for the 100 samples were 0.42 and 4.42 respectively. The median and range of GSD for within worker EI representing five workers' daily EI variation is 3.72 and 2.63 ~ 5.20, respectively, which is classified as a very large variation(GSD>3). We were able to divide the painting process into two similar exposure groups(SEGs), Touch-up and Spray. Spray painting workers were much more exposed to organic solvent than Touch-up painting workers(GM=0.71 vs. 0.19), but less variably (GSD=3.64 vs. 4.10). xylene is the substance to which the workers were most exposed(GM=16.19 ppm, GSD=4.36), and the exposure characteristics of six substances including xylene is similar to those of EI. Conclusions: The daily variation of organic solvent exposure in the shipbuilding painting process is so high that statutory Assessment of Reliability of Work Environment Monitoring needs to be conducted with statistically sufficient number of samples and evidence.

Preparation and Characterization of Swallow-Tail Terrylene Bisimide as Organic Phosphor (Swallow-Tail Terrylene Bisimide 적색 유기 형광체 제조 및 특성 연구)

  • Jung, Sung Bong;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.194-200
    • /
    • 2020
  • Perylene bisimide derivatives are developed for red organic phosphor because of their advantages, such as excellent luminous efficiency and high thermal stability. Despite these advantages, they have poor solubility characteristics in organic solvents and short emission wavelength as red organic phosphor for hybrid light-emitting diodes (LEDs). In this study, we prepared terrylene bisimide using a coupling reaction and swallow-tail imide group, which has excellent solubility. The structures and properties of swallow-tail terrylene bisimide (9C) were analyzed using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared (FT-IR), UV/Vis spectroscopy, and thermal gravimetric analysis (TGA). The maximum absorption wavelength of (9C) in the UV/Vis spectrum was 647 nm, and the maximum emission wavelength was 676 nm. In the TGA, (9C) demonstrated good thermal stability with less than 5 wt% weight loss up to 415℃. In the solubility test, (9C) has a good solubility of more than 5 wt% in chloroform and dichloromethane. When the compounds (9C) were mixed with PMMA (polymethly methacrylate), the films showed peaks at 680 nm in the PL spectra. The results verify the suitability of (9C) as a red organic phosphor for hybrid LEDs.

Addition Reaction of Glycidyl Methacrylate with Carbon Dioxide Using Quaternary Ammonium Salts as Catalys (4급 암모늄염 촉매에 의한 Glycidyl Methacrylate와 이산화탄소의 부가반응)

  • Yang, J.G.;Moon, J.Y.;Jung, S.M.;Park, D.W.;Lee, J.K.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1156-1163
    • /
    • 1996
  • This study is related to the investigation of the characteristics of quaternary ammonium salt catalyst on the addition reaction of carbon dioxide and glycidyl methacrylate(GMA) to form(2-oxo-1,3-dioxolane-4-yl)methacrylate(DOMA). Among the salts tested, the ones with higher alkyl chain length and with more nucleophilic counter anion showed a higher catalytic activity. Mixed catalysts of NaI and 18-crown-6 showed a good yield of DOMA, but when they are used alone, they showed no catalytic activity. The DOMA monomer was obtained in low polar solvents, while poly(DOMA) could be directly synthesized in aprotic dipolar solvents. Kinetic studies carried out by measuring $CO_2$ pressure in a high pressure batch reactor showed that the reaction rate was first order to the concentration of GMA and $CO_2$ respectively. The rate constant(k) was 0.56L/mol hr and Henry's constant(H') of $CO_2$ in diglyme at $80^{\circ}C$ was $6.5{\times}10^{-4}mol/L{\cdot}kPa$.

  • PDF