• Title/Summary/Keyword: Characteristics of exhaust emission

Search Result 579, Processing Time 0.028 seconds

THC reduction through the Improvement of Exhaust system (배기계 형상 개선을 통한 THC 저감에 관한 연구)

  • 김기성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.52-59
    • /
    • 2000
  • Experimental studies were performed to improve the THC emission characteristics by optimizing the flow in the exhaust manifold and CCC in a SI engine. For this purpose the flow characteristics in the exhaust manifold and CCC were measured by using LDV technique under various engine conditions, Referring to these data a new type exhaust manifold was designed to improve the cold-start emission characteristics and the response characteristics of {{{{ OMICRON _2}}}} sensor by optimizing the flow pattern and reducing the thermal inertia of the exhaust manifold system. It was found through the vehicle emission tests that the emission characteristics of THC of the new type exhaust manifold was improved by 12% through the optimizing the flow pattern in the exhaust manifold.

  • PDF

THC Reduction through the Improvement of Exhaust System (배기계 형상 개선을 통한 THC 저감에 관한 연구)

  • 김기성;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2000
  • Experimental studies were performed to understand the flow characteristics in the exhaust system and improve the THC emission characteristics by optimizing the flow in the exhaust manifold and CCC in a SI engine. For this purpose, the flow characteristics in the exhaust systems with two types of exhaust manifolds(STD and New Type) were measured by using LDV technique under various engine condition. It was found that the flow characteristics in the New Type exhaust manifold was more desirable in a view point of heat loss reduction from the exhaust gases. The vehicle emission tests showed that the THC emission in the New Type exhaust manifold was decreased by 12%.

  • PDF

Effect of Engine Specification and Driving Conditions on the Idle Emission Characteristics of SI Vehicles (Sl 자동차의 아이들 운전시 엔진 및 운행 조건에 따른 배출 가스 특성)

  • 류재욱;송정훈;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.70-76
    • /
    • 2002
  • This study focus on the effect of engine specification, driving conditions and the vehicle type on the idle emission characteristics. In order to obtain the characteristics of exhaust emissions, 1,260 vehicles of spark ignition engine are sampled and investigated. The exhaust emissions are measured with a CO/HC emission gas analyzer. The Sl engine vehicles are investigated by the effect of various exhaust emission parameters such as vehicle milage, engine specification, valve trains and fuels. The results show that the amount of CO and HC emission is not directly related to the driving mileage of the vehicle. However, the engine specifications and fuels such as the type of valve train and piston displacement have influence on the exhaust emissions. In addition, the LPG vehicle emits more CO and HC than gasoline vehicle. Based on the test results of SI vehicles, the influence of excess air and displacement volume are discussed.

A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel (소형 어선용 디젤기관의 운전조건과 부탄올 혼합유의 배기 배출물 특성에 관한 연구)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.256-263
    • /
    • 2021
  • In this study, blending oils of diesel oil and butanol were used as fuel oil for diesel engine to measure combustion pressure, fuel consumption, air ratio and exhaust gas emission due to various operating conditions such as engine revolution and torque. Using these data, the results of analyzing the engine performance, combustion characteristics and exhaust emission characteristics such as NOx (nitrogen oxides), CO2 (carbon dioxide), CO (carbon monoxide) and soot were as follows. The fuel conversion efficiency at each load was highest when driven in the engine revolution determined by a fixed pitch propeller law. Except 30% butanol blending oil, fuel conversion efficiency of the other fuel oils increased as the load increased. Compared to diesel oil, using 10% and 20% butanol blending oil as fuel oil was advantageous in terms of thermal efficiency, but it did not have a significant impact on the reduction of exhaust gas emissions. On the other hand, future research is needed on the results of the 20% butanol blending oil showing lower or similar levels of smoke concentration and carbon monoxide emission rate other than those types of diesel oil.

The Characteristics of Combustion and Exhaust Emission according to Operating Condition and Fuel Composition in a Direct Injection Type HCCI Diesel Engine (직분식 예혼합 압축착화 디젤엔진의 운전조건과 연료조성에 따른 연소 및 배기 특성)

  • 이기형;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • The Homogeneous Charge Compression Ignition (HCCI) engine has advantage for reducing the NOx and P.M. simultaneously. Therefore, HCCI engine is receiving attention as a low emission diesel engine concept. This study was carried out to investigate the characteristics of combustion and exhaust emission for operating conditions in a direct injection type of HCCI engines such as supercharged and naturally aspirated using diesel fuel and additive. From the experimental result, we found that cool flame was always appeared and also it was difficult to control combustion characteristics by changing the injection timing in HCCI. In addition, at the lean air-fuel ratio and high speed range, it was observed that charging air pressure, additive or increasing intake air temperature is effective to increase combustion performance and reduce exhaust emission. We concluded that chemical reaction by the increasing intake air temperature or additive without physical improvement has limitation for reduction of exhaust emission.

Effect of Premixing Condition on the Combustion and Emission Characteristics of HCCI Diesel Engine (균일 예혼합 압축 착화 디젤 엔진의 예혼합 조건 변화에 따른 연소 및 배기 특성)

  • Kim, Myung-Yoon;Hwang, Seok-Jun;Kim, Dae-Sik;Lee, Ki-Hyung;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.7-12
    • /
    • 2003
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To form homogeneous charge before intake manifold, the premixed fuel is injected into premixed tank by GDI injection system and the premixed fuel is ignited by direct injected diesel fuel. But in the case of high intake air temperature, premixed fuel is auto-ignited before diesel combustion and soot emission is increased. In the case of light load condition, the BSFC is improved by intake air heating because increased air temperature promoted the combustion of premixed mixture. NOx and smoke concentration of exhaust emissions are reduced compared to conventional diesel engine. The combustion characteristics of the HCCI diesel engine such as combustion pressure, rate of heat release, and exhaust emission characteristics are discussed.

  • PDF

Investigation on the Comparison of Exhaust Emission Characteristics of Passenger Cars using LPG and Diesel Fuel in Variation of Driving Mode and Ambient Conditions (주행모드 및 조건변화에 따른 LPG와 디젤승용차량 배출특성 비교에 관한 연구)

  • Kim, Hyung Jun;Lee, Jongtae;Seo, Youngho;Hong, You Deug
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.185-189
    • /
    • 2017
  • In Korea, sales of passenger cars using diesel and LPG fuels were continuously increased in recent years. From now on 2030, the registrated vehicles will close in about twenty five million in Korea. From these reason, Investigation on the comparison of exhaust emission characteristics of passenger cars using LPG and Diesel fuel in variation of driving mode and ambient conditions were conducted in this study. Exhaust emission characteristics of test vehicles were measured and analyzed by using chassis dynamometer and emission analyzer. Also, test vehicles were selected on the diesel vehicle with 1.7L engine and LPG vehicle with 2.0L engine. In order to study on emission characteristics according to driving cycles, CVS-75, NEDC, US06, SC03, Cold-FTP and HWFET were applied and the test conditions were set up the cases of A/C on and hot start. From these results, it is revealed that the NOx emission of diesel vehicle was higher than that of LPG vehicle and the case of CO emission shows the opposite patterns. In the HC emission, the emission increasing patterns not showed but the NOx emission of diesel vehicle and CO emission of LPG vehicle were showed the variation patterns according to the various driving modes.

Combustion and Exhaust Emission Characteristics of Bio-Ethanol Fuel(E100) in SI Engine (SI 엔진에서 바이오에탄올 연료(E100)의 연소 및 배기특성)

  • Ha, Sung-Yong;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.582-588
    • /
    • 2008
  • An experimental investigation was conducted to investigate the effect of Bio-ethanol fuel on the engine performance and exhaust emission characteristics under various engine operating conditions. To investigate the effect of bio-ethanol fuel, the commercial 1.6L SI engine equipped with 4 cylinder was tested on EC dynamometer. The engine performance including brake torque, brake specific fuel consumption, and barke specific energy consumption of bio-ethanol fuel was compared to those obtained by pure gasoline. Furthermore, the exhaust emissions were analyzed in terms of regulated exhaust emissions such as unburned hydrocarbon, oxides of nitrogen, and carbon monoxide.Result of this work shows that the effect of blending of ethanol to gasoline caused drastic decrease of emissions under various operating conditions. Also, improved engine performance such as brake torque and brake power were indicated for bio-ethanol fuel.

An Experimental Study(I) on the Noise Emission Characteristics of Motor Vehicles Using Sound Intensity Measurement Method -A Case of Engine and Exhaust Noise- (음향 인텐시티 측정법을 이용한 자동차의 소음방사특성에 관한 실험적 연구 I -엔진 및 배기계 부위소음을 중심으로-)

  • 양관섭;유남구;박병전;김영완
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.843-849
    • /
    • 1996
  • Locations and emission characteristics of noise source of motor vehicles are great important factors to control the road traffic noise in effective ways. From results of this study on emission characteristics of engine and exhaust noise, we could find that every noise emission of different kind of vehicles has smilar pattern. The main emission locations of engine noise for the front of vehicle became the space between the road surface and bottom of the body and radiator grill, and for the side of vehicle became the space between the road surface and bottom nearby the front wheel. In case of exhaust noise of passenger-car and light truck, all the highest sound intensity level located near surface of road. But it is hard to conclude the height of noise source of driving vehicles with only results of this study. So further studies are needed to check the emission characteristics of noise.

  • PDF

Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation (EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성)

  • 조윤호;구준모;장진영;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.