• Title/Summary/Keyword: Characteristic Ratio

Search Result 2,609, Processing Time 0.027 seconds

Machine Learning-Based Prediction of COVID-19 Severity and Progression to Critical Illness Using CT Imaging and Clinical Data

  • Subhanik Purkayastha;Yanhe Xiao;Zhicheng Jiao;Rujapa Thepumnoeysuk;Kasey Halsey;Jing Wu;Thi My Linh Tran;Ben Hsieh;Ji Whae Choi;Dongcui Wang;Martin Vallieres;Robin Wang;Scott Collins;Xue Feng;Michael Feldman;Paul J. Zhang;Michael Atalay;Ronnie Sebro;Li Yang;Yong Fan;Wei-hua Liao;Harrison X. Bai
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1213-1224
    • /
    • 2021
  • Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.

Prognostic Prediction Based on Dynamic Contrast-Enhanced MRI and Dynamic Susceptibility Contrast-Enhanced MRI Parameters from Non-Enhancing, T2-High-Signal-Intensity Lesions in Patients with Glioblastoma

  • Sang Won Jo;Seung Hong Choi;Eun Jung Lee;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-Hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1369-1378
    • /
    • 2021
  • Objective: Few attempts have been made to investigate the prognostic value of dynamic contrast-enhanced (DCE) MRI or dynamic susceptibility contrast (DSC) MRI of non-enhancing, T2-high-signal-intensity (T2-HSI) lesions of glioblastoma multiforme (GBM) in newly diagnosed patients. This study aimed to investigate the prognostic values of DCE MRI and DSC MRI parameters from non-enhancing, T2-HSI lesions of GBM. Materials and Methods: A total of 76 patients with GBM who underwent preoperative DCE MRI and DSC MRI and standard treatment were retrospectively included. Six months after surgery, the patients were categorized into early progression (n = 15) and non-early progression (n = 61) groups. We extracted and analyzed the permeability and perfusion parameters of both modalities for the non-enhancing, T2-HSI lesions of the tumors. The optimal percentiles of the respective parameters obtained from cumulative histograms were determined using receiver operating characteristic (ROC) curve and univariable Cox regression analyses. The results were compared using multivariable Cox proportional hazards regression analysis of progression-free survival. Results: The 95th percentile value (PV) of Ktrans, mean Ktrans, and median Ve were significant predictors of early progression as identified by the ROC curve analysis (area under the ROC curve [AUC] = 0.704, p = 0.005; AUC = 0.684, p = 0.021; and AUC = 0.670, p = 0.0325, respectively). Univariable Cox regression analysis of the above three parametric values showed that the 95th PV of Ktrans and the mean Ktrans were significant predictors of early progression (hazard ratio [HR] = 1.06, p = 0.009; HR = 1.25, p = 0.017, respectively). Multivariable Cox regression analysis, which also incorporated clinical parameters, revealed that the 95th PV of Ktrans was the sole significant independent predictor of early progression (HR = 1.062, p < 0.009). Conclusion: The 95th PV of Ktrans from the non-enhancing, T2-HSI lesions of GBM is a potential prognostic marker for disease progression.

Two-Dimensional Shear Wave Elastography Predicts Liver Fibrosis in Jaundiced Infants with Suspected Biliary Atresia: A Prospective Study

  • Huadong Chen;Luyao Zhou;Bing Liao;Qinghua Cao;Hong Jiang;Wenying Zhou;Guotao Wang;Xiaoyan Xie
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.959-969
    • /
    • 2021
  • Objective: This study aimed to evaluate the role of preoperative two-dimensional (2D) shear wave elastography (SWE) in assessing the stages of liver fibrosis in patients with suspected biliary atresia (BA) and compared its diagnostic performance with those of serum fibrosis biomarkers. Materials and Methods: This study was approved by the ethical committee, and written informed parental consent was obtained. Two hundred and sixteen patients were prospectively enrolled between January 2012 and October 2018. The 2D SWE measurements of 69 patients have been previously reported. 2D SWE measurements, serum fibrosis biomarkers, including fibrotic markers and biochemical test results, and liver histology parameters were obtained. 2D SWE values, serum biomarkers including, aspartate aminotransferase to platelet ratio index (APRi), and other serum fibrotic markers were correlated with the stages of liver fibrosis by METAVIR. Receiver operating characteristic (ROC) curves and area under the ROC (AUROC) curve analyses were used. Results: The correlation coefficient of 2D SWE value in correlation with the stages of liver fibrosis was 0.789 (p < 0.001). The cut-off values of 2D SWE were calculated as 9.1 kPa for F1, 11.6 kPa for F2, 13.0 kPa for F3, and 15.7 kPa for F4. The AUROCs of 2D SWE in the determination of the stages of liver fibrosis ranged from 0.869 to 0.941. The sensitivity and negative predictive value of 2D SWE in the diagnosis of ≥ F3 was 93.4% and 96.0%, respectively. The diagnostic performance of 2D SWE was superior to that of APRi and other serum fibrotic markers in predicting severe fibrosis and cirrhosis (all p < 0.005) and other serum biomarkers. Multivariate analysis showed that the 2D SWE value was the only statistically significant parameter for predicting liver fibrosis. Conclusion: 2D SWE is a more effective non-invasive tool for predicting the stage of liver fibrosis in patients with suspected BA, compared with serum fibrosis biomarkers.

Added Value of Chemical Exchange-Dependent Saturation Transfer MRI for the Diagnosis of Dementia

  • Jang-Hoon Oh;Bo Guem Choi;Hak Young Rhee;Jin San Lee;Kyung Mi Lee;Soonchan Park;Ah Rang Cho;Chang-Woo Ryu;Key Chung Park;Eui Jong Kim;Geon-Ho Jahng
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.770-781
    • /
    • 2021
  • Objective: Chemical exchange-dependent saturation transfer (CEST) MRI is sensitive for detecting solid-like proteins and may detect changes in the levels of mobile proteins and peptides in tissues. The objective of this study was to evaluate the characteristics of chemical exchange proton pools using the CEST MRI technique in patients with dementia. Materials and Methods: Our institutional review board approved this cross-sectional prospective study and informed consent was obtained from all participants. This study included 41 subjects (19 with dementia and 22 without dementia). Complete CEST data of the brain were obtained using a three-dimensional gradient and spin-echo sequence to map CEST indices, such as amide, amine, hydroxyl, and magnetization transfer ratio asymmetry (MTRasym) values, using six-pool Lorentzian fitting. Statistical analyses of CEST indices were performed to evaluate group comparisons, their correlations with gray matter volume (GMV) and Mini-Mental State Examination (MMSE) scores, and receiver operating characteristic (ROC) curves. Results: Amine signals (0.029 for non-dementia, 0.046 for dementia, p = 0.011 at hippocampus) and MTRasym values at 3 ppm (0.748 for non-dementia, 1.138 for dementia, p = 0.022 at hippocampus), and 3.5 ppm (0.463 for non-dementia, 0.875 for dementia, p = 0.029 at hippocampus) were significantly higher in the dementia group than in the non-dementia group. Most CEST indices were not significantly correlated with GMV; however, except amide, most indices were significantly correlated with the MMSE scores. The classification power of most CEST indices was lower than that of GMV but adding one of the CEST indices in GMV improved the classification between the subject groups. The largest improvement was seen in the MTRasym values at 2 ppm in the anterior cingulate (area under the ROC curve = 0.981), with a sensitivity of 100 and a specificity of 90.91. Conclusion: CEST MRI potentially allows noninvasive image alterations in the Alzheimer's disease brain without injecting isotopes for monitoring different disease states and may provide a new imaging biomarker in the future.

Pleural Carcinoembryonic Antigen and Maximum Standardized Uptake Value as Predictive Indicators of Visceral Pleural Invasion in Clinical T1N0M0 Lung Adenocarcinoma

  • Hye Rim Na;Seok Whan Moon;Kyung Soo Kim;Mi Hyoung Moon;Kwanyong Hyun;Seung Keun Yoon
    • Journal of Chest Surgery
    • /
    • v.57 no.1
    • /
    • pp.44-52
    • /
    • 2024
  • Background: Visceral pleural invasion (VPI) is a poor prognostic factor that contributes to the upstaging of early lung cancers. However, the preoperative assessment of VPI presents challenges. This study was conducted to examine intraoperative pleural carcinoembryonic antigen (pCEA) level and maximum standardized uptake value (SUVmax) as predictive markers of VPI in patients with clinical T1N0M0 lung adenocarcinoma. Methods: A retrospective review was conducted of the medical records of 613 patients who underwent intraoperative pCEA sampling and lung resection for non-small cell lung cancer. Of these, 390 individuals with clinical stage I adenocarcinoma and tumors ≤30 mm were included. Based on computed tomography findings, these patients were divided into pleural contact (n=186) and non-pleural contact (n=204) groups. A receiver operating characteristic (ROC) curve was constructed to analyze the association between pCEA and SUVmax in relation to VPI. Additionally, logistic regression analysis was performed to evaluate risk factors for VPI in each group. Results: ROC curve analysis revealed that pCEA level greater than 2.565 ng/mL (area under the curve [AUC]=0.751) and SUVmax above 4.25 (AUC=0.801) were highly predictive of VPI in patients exhibiting pleural contact. Based on multivariable analysis, pCEA (odds ratio [OR], 3.00; 95% confidence interval [CI], 1.14-7.87; p=0.026) and SUVmax (OR, 5.25; 95% CI, 1.90-14.50; p=0.001) were significant risk factors for VPI in the pleural contact group. Conclusion: In patients with clinical stage I lung adenocarcinoma exhibiting pleural contact, pCEA and SUVmax are potential predictive indicators of VPI. These markers may be helpful in planning for lung cancer surgery.

Cepstral Distance and Log-Energy Based Silence Feature Normalization for Robust Speech Recognition (강인한 음성인식을 위한 켑스트럼 거리와 로그 에너지 기반 묵음 특징 정규화)

  • Shen, Guang-Hu;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.278-285
    • /
    • 2010
  • The difference between training and test environments is one of the major performance degradation factors in noisy speech recognition and many silence feature normalization methods were proposed to solve this inconsistency. Conventional silence feature normalization method represents higher classification performance in higher SNR, but it has a problem of performance degradation in low SNR due to the low accuracy of speech/silence classification. On the other hand, cepstral distance represents well the characteristic distribution of speech/silence (or noise) in low SNR. In this paper, we propose a Cepstral distance and Log-energy based Silence Feature Normalization (CLSFN) method which uses both log-energy and cepstral euclidean distance to classify speech/silence for better performance. Because the proposed method reflects both the merit of log energy being less affected with noise in high SNR and the merit of cepstral distance having high discrimination accuracy for speech/silence classification in low SNR, the classification accuracy will be considered to be improved. The experimental results showed that our proposed CLSFN presented the improved recognition performances comparing with the conventional SFN-I/II and CSFN methods in all kinds of noisy environments.

MRI Findings Suggestive of Metastatic Axillary Lymph Nodes in Patients with Invasive Breast Cancer (유방암 환자에서 액와부 림프절 전이를 시사하는 자기공명영상 소견)

  • Ka Eun Kim;Shin Young Kim;Eun Young Ko
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.620-631
    • /
    • 2022
  • Purpose This study aimed to investigate the diagnostic performance of features suggestive of nodal metastasis on preoperative MRI in patients with invasive breast cancer. Materials and Methods We retrospectively reviewed the preoperative breast MRI of 192 consecutive patients with surgically proven invasive breast cancer. We analyzed MRI findings of axillary lymph nodes with regard to the size, long/short ratio, cortical thickness, shape and margin of the cortex, loss of hilum, asymmetry, signal intensity (SI) on T2-weighted images (T2WI), degree of enhancement in the early phase, and enhancement kinetics. Receiver operating characteristic (ROC) analysis, chi-square test, t test, and McNemar's test were used for statistical analysis. Results Increased shorter diameter, uneven cortical shape, increased cortical thickness, loss of hilum, asymmetry, irregular cortical margin, and low SI on T2WI were significantly suggestive of metastasis. ROC analysis revealed the cutoff value for the shorter diameter and cortical thickness as 8.05 mm and 2.75 mm, respectively. Increased cortical thickness (> 2.75 mm) and uneven cortical shape showed significantly higher sensitivity than other findings in McNemar's test. Irregular cortical margins showed the highest specificity (100%). Conclusion Cortical thickness > 2.75 mm and uneven cortical shape are more sensitive parameters than other findings, and an irregular cortical margin is the most specific parameter for predicting axillary metastasis in patients with invasive breast cancer.

Clinical Assessments and MRI Findings Suggesting Early Surgical Treatment for Patients with Medial Epicondylitis (내측상과염 환자의 임상항목과 자기공명영상 항목 중 조기 수술적 치료가 필요한 환자군이 갖는 인자에 관한 분석)

  • Hyungin Park;Seok Hahn;Jisook Yi;Jin-Young Bang;Youngbok Kim;Hyung Kyung Jung;Jiyeon Baik
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.3
    • /
    • pp.613-623
    • /
    • 2021
  • Purpose To evaluate the MRI findings and clinical factors that are characteristic of patients who ultimately undergo surgery for medial epicondylitis. Materials and Methods Fifty-two consecutive patients who were diagnosed with medial epicondylitis and underwent an elbow MRI between March 2010 and December 2018 were included in this retrospective study. The patients' demographic information, clinical data, and MRI findings were evaluated. All variables were compared between the conservative treatment and surgical treatment groups. Logistic regression analyses were conducted to identify which factors were associated with surgical treatment. Results Common flexor tear (CFT) tear size showed a statistically significant difference in both the transverse and longitudinal planes (p < 0.001, p = 0.013). The CFT abnormality grade significantly differed in both the transverse and longitudinal planes (p = 0.022, p = 0.003). A significant difference was also found in the medial collateral ligament abnormality (p = 0.025). Logistic regression analyses showed that only the transverse diameter of the CFT tear size (odds ratio: 1.864; 95% confidence interval: 1.264-2.750) was correlated with surgical treatment. Conclusion Of patients diagnosed with medial epicondylitis, patients with a larger transverse CFT tear size tend to undergo surgical treatment ultimately.

Prognostic Value of 18F-FDG PET/CT Radiomics in Extranodal Nasal-Type NK/T Cell Lymphoma

  • Yu Luo;Zhun Huang;Zihan Gao;Bingbing Wang;Yanwei Zhang;Yan Bai;Qingxia Wu;Meiyun Wang
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.189-198
    • /
    • 2024
  • Objective: To investigate the prognostic utility of radiomics features extracted from 18F-fluorodeoxyglucose (FDG) PET/CT combined with clinical factors and metabolic parameters in predicting progression-free survival (PFS) and overall survival (OS) in individuals diagnosed with extranodal nasal-type NK/T cell lymphoma (ENKTCL). Materials and Methods: A total of 126 adults with ENKTCL who underwent 18F-FDG PET/CT examination before treatment were retrospectively included and randomly divided into training (n = 88) and validation cohorts (n = 38) at a ratio of 7:3. Least absolute shrinkage and selection operation Cox regression analysis was used to select the best radiomics features and calculate each patient's radiomics scores (RadPFS and RadOS). Kaplan-Meier curve and Log-rank test were used to compare survival between patient groups risk-stratified by the radiomics scores. Various models to predict PFS and OS were constructed, including clinical, metabolic, clinical + metabolic, and clinical + metabolic + radiomics models. The discriminative ability of each model was evaluated using Harrell's C index. The performance of each model in predicting PFS and OS for 1-, 3-, and 5-years was evaluated using the time-dependent receiver operating characteristic (ROC) curve. Results: Kaplan-Meier curve analysis demonstrated that the radiomics scores effectively identified high- and low-risk patients (all P < 0.05). Multivariable Cox analysis showed that the Ann Arbor stage, maximum standardized uptake value (SUVmax), and RadPFS were independent risk factors associated with PFS. Further, β2-microglobulin, Eastern Cooperative Oncology Group performance status score, SUVmax, and RadOS were independent risk factors for OS. The clinical + metabolic + radiomics model exhibited the greatest discriminative ability for both PFS (Harrell's C-index: 0.805 in the validation cohort) and OS (Harrell's C-index: 0.833 in the validation cohort). The time-dependent ROC analysis indicated that the clinical + metabolic + radiomics model had the best predictive performance. Conclusion: The PET/CT-based clinical + metabolic + radiomics model can enhance prognostication among patients with ENKTCL and may be a non-invasive and efficient risk stratification tool for clinical practice.

Development and Testing of a Machine Learning Model Using 18F-Fluorodeoxyglucose PET/CT-Derived Metabolic Parameters to Classify Human Papillomavirus Status in Oropharyngeal Squamous Carcinoma

  • Changsoo Woo;Kwan Hyeong Jo;Beomseok Sohn;Kisung Park;Hojin Cho;Won Jun Kang;Jinna Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.1
    • /
    • pp.51-61
    • /
    • 2023
  • Objective: To develop and test a machine learning model for classifying human papillomavirus (HPV) status of patients with oropharyngeal squamous cell carcinoma (OPSCC) using 18F-fluorodeoxyglucose (18F-FDG) PET-derived parameters in derived parameters and an appropriate combination of machine learning methods in patients with OPSCC. Materials and Methods: This retrospective study enrolled 126 patients (118 male; mean age, 60 years) with newly diagnosed, pathologically confirmed OPSCC, that underwent 18F-FDG PET-computed tomography (CT) between January 2012 and February 2020. Patients were randomly assigned to training and internal validation sets in a 7:3 ratio. An external test set of 19 patients (16 male; mean age, 65.3 years) was recruited sequentially from two other tertiary hospitals. Model 1 used only PET parameters, Model 2 used only clinical features, and Model 3 used both PET and clinical parameters. Multiple feature transforms, feature selection, oversampling, and training models are all investigated. The external test set was used to test the three models that performed best in the internal validation set. The values for area under the receiver operating characteristic curve (AUC) were compared between models. Results: In the external test set, ExtraTrees-based Model 3, which uses two PET-derived parameters and three clinical features, with a combination of MinMaxScaler, mutual information selection, and adaptive synthetic sampling approach, showed the best performance (AUC = 0.78; 95% confidence interval, 0.46-1). Model 3 outperformed Model 1 using PET parameters alone (AUC = 0.48, p = 0.047) and Model 2 using clinical parameters alone (AUC = 0.52, p = 0.142) in predicting HPV status. Conclusion: Using oversampling and mutual information selection, an ExtraTree-based HPV status classifier was developed by combining metabolic parameters derived from 18F-FDG PET/CT and clinical parameters in OPSCC, which exhibited higher performance than the models using either PET or clinical parameters alone.