• 제목/요약/키워드: Characteristic Diffusion Time

검색결과 87건 처리시간 0.028초

W-C-N 확산방지막의 전자거동(ElectroMigration) 특성과 표면 강도(Surface Hardness) 특성 연구 (Characteristics of Electomigration & Surface Hardness about Tungsten-Carbon-Nitrogen(W-C-N) Related Diffusion Barrier)

  • 김수인;김창성;이재윤;박준;노재규;안찬근;오찬우;함동식;황영주;유경환;이창우
    • 한국진공학회지
    • /
    • 제18권3호
    • /
    • pp.203-207
    • /
    • 2009
  • 반도체 공정에서 기존 금속배선으로 사용되던 Al을 대체하여 사용되는 금속배선으로는 Cu가 그 대안으로 인식되고 있다. 이는 비저항값이 Al ($2.66{\mu}{\Omega}$-cm)보다 Cu ($1.67{\mu}{\Omega}$-cm)가 더 작아 RC 지연 시간 (RC delay time)을 극복하기 때문이다. 그러나 Cu의 녹는점은 $1085^{\circ}C$로 높지만 저온에서 쉽게 Si기판과 반응하는 특성을 가지고 있고, 또한 Si과의 접착력이 좋이 않는 것으로 알려져 있다. 이러한 이유로 Cu와 Si과의 반응을 방지하고 접착력을 높이기 위하여 확산방지막의 연구가 꾸준히 진행되고 있다. 본 연구그룹에서는 Cu의 확산을 방지하기 위하여 W-C-N의 확산방지막에 대하여 연구하여 왔다. 지금까지 보고된 연구 결과에 의하면 W-C-N (tungsten-carbon-nitrogen) 확산방지막은 고온에서도 Cu와 Si과의 확산을 효과적으로 방지하는 것으로 보고되었다. 이 논문에서는 W-C-N 확산방지막에 질소(N) 비율을 다르게 증착하여 지금까지 진행한 연구 결과를 기반으로 새로이 Cu의 전자거동현상(Electromigration)에 대하여 연구하였고, 고온 열처리 과정에서 박막의 표면강도 (Surface hardness)를 Nano-Indenter system을 이용하여 연구하였다. 이러한 연구를 통하여 박막내 질소가 포함된 W-C-N 확산방지막이 Cu의 전자거동에 더 안정적이며, 고온 열처리 과정에서도 표면 강도가 더 안정한 연구 결과를 획득하였다.

관류자기공명 영상처리 알고리즘을 이용한 대뇌 혈류량 맵의 구현 (Implementation of Regional Cerebral Blood Volume Map Using Perfusion Magnetic Resonance Image Process Algorithm)

  • 박병래
    • 한국콘텐츠학회논문지
    • /
    • 제5권5호
    • /
    • pp.296-304
    • /
    • 2005
  • 고양이 뇌 지방색전증을 유발한 후 자기공명 관류영상기법을 이용하여 대뇌혈류량을 정량적으로 분석하고 동적특성 변화를 구현 할 수 있는 기법을 제안한다. 고양이 20마리를 대상으로 한쪽 내경동맥에 리노레익 (n=11)을 주입하여 뇌 지방색전을 유발시켰고, 대조군으로는 이바론 입자 (n=9)를 주입하여 색전이 유발되게 하였다. 그 후 30분과 2시간에 각각 T2강조, 확산강조영상을 획득하고 가장 색전이 많이 일어난 부위에서 관류강조영상을 획득하였다. 획득한 데이터는 IDL 소프트웨어와 자체 개발한 영상처리 알고리즘을 이용하여 신호강도 곡선을 ${\Delta}R_2^*$ 곡선으로 변환한 후 적분하여 뇌혈류량을 측정하였다. 실험군에서 병변부위의 뇌혈류량은 정상부위에 비해 감소하였으며, 뇌혈류량 비는 시간경과에 따라 유의한 차이가 있었다 (P<0.005). 뇌 지방색전증의 초기에는 혈류량이 감소하였으나, 2시간에서는 30분에 비해 뇌혈류량이 다소 증가됨을 관찰 할 수 있었다. 뇌경색 발생시 조기에 자기공명확산 및 관류강조영상을 획득하여 개발한 영상처리 알고리즘을 적용하여 뇌 혈류량의 다양한 동적변화 특성 및 혈류역학적 변화를 상대적 관류도 맵으로 얻을 수 있었다.

  • PDF

Residence Time Distribution in the Chromatographic Column: Applications in the Separation Engineering of DNA

  • Park, Young G.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권2호
    • /
    • pp.117-125
    • /
    • 2003
  • Experimental and theoretical works were performed for the separation of large polyelectrolyte, such as DNA, in a column packed with gel particles under the influence of an electric field. Since DNA quickly orient in the field direction through the pores, this paper presents how intraparticle convection affects the residence time distribution of DNAs in the column. The concept is further illustrated with examples from solid -liquid systems, for example, from chromatography Showing how the column efficiency is improved by the use of a n electric field. Dimensionless transient mass balance equations were derived, taking into consideration both diffusion and electrophoretic convection. The separation criteria are theoretically studied using two different Peclet numbers in the fluid and solid phases. These criteria were experimentally verified using two different DNAs via electrophoretic mobility measurements. which showed how the separation position of the DNAs varies in the column in relation to the Peg/Pef values of an individual DNA. The residence time distribution was solved by an operator theory and the characteristic method to yield the column response.

2차원 시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 입자 크기 측정 (Soot Primary Particle Size Measurement in a Ethylene Diffusion Flame Using Time-Resolved Laser-Induced Incandescence)

  • 손무강;문건필;김규보;이종호;정동수;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1140-1145
    • /
    • 2004
  • Laser-induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles in flame environments. This technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application. The evaluation of the temporal decay of the laser-induced incandescence (LII) signal from soot particles is introduced as a technique to obtain two-dimensional distributions of particle sizes and is applied to a laminar diffusion flame. This novel approach to soot sizing exhibits several theoretical and technical advantages compared with the established combination of elastic scattering and LII, especially as it yields absolute sizes of primary particles without requiring calibration. With this technique a spatially resolved 2-D measurement of soot primary particle sizes is feasible in a combination process form the ratio of emission signals obtained at two delay times after a laser pulse, as the cooling behavior is characteristic of particle size.

  • PDF

Percentile-Based Analysis of Non-Gaussian Diffusion Parameters for Improved Glioma Grading

  • Karaman, M. Muge;Zhou, Christopher Y.;Zhang, Jiaxuan;Zhong, Zheng;Wang, Kezhou;Zhu, Wenzhen
    • Investigative Magnetic Resonance Imaging
    • /
    • 제26권2호
    • /
    • pp.104-116
    • /
    • 2022
  • The purpose of this study is to systematically determine an optimal percentile cut-off in histogram analysis for calculating the mean parameters obtained from a non-Gaussian continuous-time random-walk (CTRW) diffusion model for differentiating individual glioma grades. This retrospective study included 90 patients with histopathologically proven gliomas (42 grade II, 19 grade III, and 29 grade IV). We performed diffusion-weighted imaging using 17 b-values (0-4000 s/mm2) at 3T, and analyzed the images with the CTRW model to produce an anomalous diffusion coefficient (Dm) along with temporal (𝛼) and spatial (𝛽) diffusion heterogeneity parameters. Given the tumor ROIs, we created a histogram of each parameter; computed the P-values (using a Student's t-test) for the statistical differences in the mean Dm, 𝛼, or 𝛽 for differentiating grade II vs. grade III gliomas and grade III vs. grade IV gliomas at different percentiles (1% to 100%); and selected the highest percentile with P < 0.05 as the optimal percentile. We used the mean parameter values calculated from the optimal percentile cut-offs to do a receiver operating characteristic (ROC) analysis based on individual parameters or their combinations. We compared the results with those obtained by averaging data over the entire region of interest (i.e., 100th percentile). We found the optimal percentiles for Dm, 𝛼, and 𝛽 to be 68%, 75%, and 100% for differentiating grade II vs. III and 58%, 19%, and 100% for differentiating grade III vs. IV gliomas, respectively. The optimal percentile cut-offs outperformed the entire-ROI-based analysis in sensitivity (0.761 vs. 0.690), specificity (0.578 vs. 0.526), accuracy (0.704 vs. 0.639), and AUC (0.671 vs. 0.599) for grade II vs. III differentiations and in sensitivity (0.789 vs. 0.578) and AUC (0.637 vs. 0.620) for grade III vs. IV differentiations, respectively. Percentile-based histogram analysis, coupled with the multi-parametric approach enabled by the CTRW diffusion model using high b-values, can improve glioma grading.

Diffusion-Weighted MR Imaging of Intracerebral Hemorrhage

  • Bo Kiung Kang;Dong Gyu Na;Jae Wook Ryoo;Hong Sik Byun;Hong Gee Roh;Yong Seon Pyeun
    • Korean Journal of Radiology
    • /
    • 제2권4호
    • /
    • pp.183-191
    • /
    • 2001
  • Objective: To document the signal characteristics of intracerebral hemorrhage (ICH) at evolving stages on diffusion-weighted images (DWI) by comparison with conventional MR images. Materials and Methods: In our retrospective study, 38 patients with ICH underwent a set of imaging sequences that included DWI, T1-and T2-weighted imaging, and fluid-attenuated inversion recovery (FLAIR). In 33 and 10 patients, respectively, conventional and echo-planar T2* gradient-echo images were also obtained. According to the time interval between symptom onset and initial MRI, five stages were categorized: hyperacute (n=6); acute (n=7); early subacute (n=7); late subacute (n=10); and chronic (n=8). We investigated the signal intensity and apparent diffusion coefficient (ADC) of ICH and compared the signal intensities of hematomas at DWI and on conventional MR images. Results: DWI showed that hematomas were hyperintense at the hyperacute and late subacute stages, and hypointense at the acute, early subacute and chronic stages. Invariably, focal hypointensity was observed within a hyperacute hematoma. At the hyperacute, acute and early subacute stages, hyperintense rims that corresponded with edema surrounding the hematoma were present. The mean ADC ratio was 0.73 at the hyperacute stage, 0.72 at the acute stage, 0.70 at the early subacute stage, 0.72 at the late subacute stage, and 2.56 at the chronic stage. Conclusion: DWI showed that the signal intensity of an ICH may be related to both its ADC value and the magnetic susceptibility effect. In patients with acute stroke, an understanding of the characteristic features of ICH seen at DWI can be helpful in both the characterization of intracranial hemorrhagic lesions and the differentiation of hemorrhage from ischemia.

  • PDF

수소 난류확산화염에서 NOx 생성특성에 대한 복사분율의 영향 (The Effect of Flame Radiation on NOx Emission Characteristic in Hydrogen Turbulent Diffusion Flames)

  • 김승한;김문기;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.47-58
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the l/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

Butane gas가 흰쥐 혈청과 조직의 Lactatedehydrogenase 및 Cholinesterase에 미치는 영향 (The Effect of Butane gas on Rat Cholinesterase and Lactatedehydrogenase)

  • 윤수홍;박은주;조수열;최현태
    • Environmental Analysis Health and Toxicology
    • /
    • 제6권3_4호
    • /
    • pp.123-132
    • /
    • 1991
  • Acute poisoning with organic solvents and other volatile compounds now usually follows deliberate inhalation (volatile substance abuse) or ingestion of these compounds. The effect of butane gas inhalation was analyzed for serum, liver, brain, lung and muscle. And the observations are revealed on rat cholinesterase activity, lactatedehydrogenase activity and electrophoretic pattern of lactatedehydrogenase isozyme. The results are as follows: 1. The rat cholinesterase activity on serum, liver and muscle show the decreased by increasing of inhalation time of butane gas in particular the lung cholinesterase activity was greatly affected. 2. Butane gas inhalation brought out the lactatedehydrogenase activity increased of the serum and the tissues and had an important effect especially in both the liver and muscle 1actatedehydrogenase activities. 3. Each tissue was found to have a characteristic distribution of lactatedehy-drogenase isozymes on celluloseacetate electrophoresis and the development of inhalation time is shown the disappearance and diffusion of band. The toxicity of butane gas inhalation was most prominence in the liver and lung toxicity was occurred also.

  • PDF

낙구식 점도계를 이용한 점탄성유체의 유동에 관한 연구 (A Study on the Flow Behavior of the Viscoelastic Fluids in the Falling Ball Viscometer)

  • 전찬열
    • 한국안전학회지
    • /
    • 제3권1호
    • /
    • pp.15-19
    • /
    • 1988
  • The falling ball viscometer has been widely used for measuring the viscosity of the Newtonian fluids because of its simple theory and low cost. The use of the falling ball viscometer for measuring the non-Newtonian viscosity has been of interest to rheologists for some years. The analysis of the experimental results in a falling ball viscometer rest on Stokes law which yields the terminal velocity for a sphere moving through an infinite medium of fluids. An attempt to use the falling ball viscometer to measure the non-Newtonian viscosity in the intermediate shear rate ranEe was sucessfully accomplished by combining the direct experimental obserbations with a simple analytical model for the average shear-stress and shear rate at, the surface of a sphere. In the experiments with highly viscoelastic polyacrylamide solutions the terminal velocity was observed to be dependent on the time interval between the dropping of successive balls. The time-dependent phenomenon was used to determine characteristic diffusion times of the concentrated solutions of polyacrylamide.

  • PDF

Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

  • Taisen, Zhao;Yi, Zhang;Kefei, Li;Junjie, Wang
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.831-849
    • /
    • 2022
  • One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC's chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China's coastline. Finally, various recommendations are made for improving durability design against chloride attacks.