• Title/Summary/Keyword: Chaotic fish behavior

Search Result 4, Processing Time 0.02 seconds

Modeling the Selectivity of the Cod-end of a Trawl Using Chaotic Fish Behavior and Neural Networks

  • Kim, Yong-Hae;Wardle, Clement S.
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Using empirical data of fish performance and physiological limits as well as physical stimuli and environmental data, a cod-end selectivity model based on a chaotic behavior model using the psycho-hydraulic wheel and neural-network approach was established to predict fish escape or herding responses in trawl and cod-end designs. Fish responses in the cod-end were categorized as escape or herding reactions based on their relative positions and reactions to the net wall. Fish movements were regulated by three factors: escape time, a visual looming effect, and an index of body girth-mesh size. The model was applied to haddock in a North Sea bottom trawl including frequencies of movement components, swimming speed, angular velocity, distance to net wall, and the caught-fish ratio; simulation results were similar to field observations. The ratio of retained fish in the cod-end was limited to 37-95% by optomotor coefficient values of 0.3-1.0 and to 13-67% by looming coefficient values of 0.1-1.0. The selectivity curves generated by this model were sensitive to changes in mesh size, towing speed, mesh type, and mesh shape.

Generating Complex Klinokinetic Movements of 2-D Migration Circuits Using Chaotic Model of Fish Behavior

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.159-169
    • /
    • 2007
  • The complex 2-dimensional movements of fish during an annual migration circuit were generated and simulated by a chaotic model of fish movement, which was expanded from a small-scale movement model. Fish migration was modeled as a neural network including stimuli, central decision-making, and output responses as variables. The input stimuli included physical stimuli (temperature, salinity, turbidity, flow), biotic factors (prey, predators, life cycle) and landmarks or navigational aids (sun, moon, weather), values of which were all normalized as ratios. By varying the amplitude and period coefficients of the klinokinesis index using chaotic equations, model results (i.e., spatial orientation patterns of migration through time) were represented as fish feeding, spawning, overwintering, and sheltering. Simulations using this model generated 2-dimesional annual movements of sea bream migration in the southern and western seas of the Korean Peninsula. This model of object-oriented and large-scale fish migration produced complicated and sensitive migratory movements by varying both the klinokinesis coefficients (e.g., the amplitude and period of the physiological month) and the angular variables within chaotic equations.

Developing a Simulator of the Capture Process in Towed Fishing Gears by Chaotic Fish Behavior Model and Parallel Computing

  • Kim Yong-Hae;Ha Seok-Wun;Jun Yong-Kee
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 2004
  • A fishing simulator for towed fishing gear was investigated in order to mimic the fish behavior in capture process and investigate fishing selectivity. A fish behavior model using a psycho-hydraulic wheel activated by stimuli is established to introduce Lorenz chaos equations and a neural network system and to generate the components of realistic fish capture processes. The fish positions within the specified gear geometry are calculated from normalized intensities of the stimuli of the fishing gear components or neighboring fish and then these are related to the sensitivities and the abilities of the fish. This study is applied to four different towed gears i.e. a bottom trawl, a midwater trawl, a two-boat seine, and an anchovy boat seine and for 17 fish species as mainly caught. The Alpha cluster computer system and Fortran MPI (Message-Passing Interface) parallel programming were used for rapid calculation and mass data processing in this chaotic behavior model. The results of the simulation can be represented as animation of fish movements in relation to fishing gear using Open-GL and C graphic programming and catch data as well as selectivity analysis. The results of this simulator mimicked closely the field studies of the same gears and can therefore be used in further study of fishing gear design, predicting selectivity and indoor training systems.

Swimming Characteristics of the Black Porgy Acanthopagrus schlegeli in the Towing Cod-End of a Trawl

  • Kim Yong-Hae;Jang Chi Yeong
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Fishing selectivity is determined by the level of voluntary escaping behavior in accordance with decision-making based on the relationship between fish size and mesh size. This study examined movement during the swimming behavior of black porgy in a trawl's towing cod-end and analyzed the movement components such as swimming speed, angular velocity of turning, and distance to the net over time. Most of the observed fish exhibited an optomotor response, maintaining position and swimming speed without changing direction. Others exhibited erratic or 'panic' behavior with sudden changes in swimming speed and direction. The latter behavior involved very irregular and aperiodic variations in swimming speed and angular velocity, termed 'chaotic behavior.' Thus, the results of this study can be applied to a chaotic behavior model as a time series of swimming movements in the towing cod-end for the fishing selectivity.