• Title/Summary/Keyword: Channel-estimation

Search Result 1,333, Processing Time 0.024 seconds

Channel estimation and detection with space-time transmission scheme in colocated multiple-input and multiple-output system

  • Pratibha Rani;Arti M.K.;Pradeep Kumar Dimri
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.952-962
    • /
    • 2023
  • In this study, a space-time transmission scheme is proposed to tackle the limitations of channel estimation with orthogonal pilot information in colocated multiple-input multiple-output systems with several transmitting and receiving antennas. Channel information is obtained using orthogonal pilots. Channel estimation introduces pilot heads required to estimate a channel. This leads to bandwidth insufficiency. As a result, trade-offs exist between the number of pilots required to estimate a channel versus spectral efficiency. The detection of data symbols is performed using the maximum likelihood decoding method as it provides a consistent approach to parameter estimation problems. The moment-generating function of the instantaneous signal-to-noise ratio is used to drive an approximate expression of the symbol error rate for the proposed scheme. Furthermore, the order of diversity is less by one than the number of receiver antennas used in the proposed scheme. The effect of the length of a pilot sequence on the proposed scheme's performance is also investigated.

Novel Channel Estimation Method in Fast Fading Channels Applied to LTE-Advanced (LTE-Advanced에 적용되는 빠른 페이딩 채널의 새로운 채널 추정 방법)

  • Malik, Saransh;Portugal, Sherlie;Moon, Sang-Mi;Kim, Bo-Ra;Kim, Cheol-Sung;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.51-58
    • /
    • 2012
  • Accurate transmission and estimation of the channel statistics affected by high Doppler spread is one of the main issues of concern for the latest and future mobile communication systems. Therefore, it is important to research in novel channel estimation techniques that overcome the limitations of conventional methods. In this paper, we propose a novel channel estimation method that, after a simple estimation in the first OFDM symbol, uses Kalman filter to predict the channel in the rest of OFDM symbols with pilot subcarriers. Our method is designed considering the lattice-type arrangement of pilot subcarriers in LTE-Advanced, since most of the studies so far focus on block-type or comb-type pilot arrangements. In addition, to optimize the results, we use the filtering of channel impulse response and Wiener Filter for the estimation of the channel frequency response in the rest of the subcarriers.

Resource Allocation for Maximizing Energy Efficiency in Energy Harvesting Networks with Channel Estimation Error (채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 에너지 효율성을 최대화 하는 자원할당 방안)

  • Lee, Kisong;Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.506-512
    • /
    • 2016
  • Recently, energy harvesting technology is considered as a tool to improve the lifetime of sensor networks by mitigating the battery capacity limitation problem. However, the previous work on energy harvesting has failed to provide practical information since it has assumed an ideal channel knowledge model with perfect channel state information at transmitter (CSIT). This paper proposes an energy efficient resource allocation scheme that takes account of the channel estimation process and the corresponding estimation error. Based on the optimization tools, we provide information on efficient scheduling and power allocation as the functions of channel estimation accuracy, harvested energy, and data rate. The simulation results confirm that the proposed scheme outperforms the conventional energy harvesting networks without considering channel estimation error in terms of energy efficiency. Furthermore, with taking account of channel estimation error, the results provides a new way for allocating resources and scheduling devices.

Iterative Self-Interference Channel Estimation for In-Band Full-Duplex Cellular Systems (대역내 전이중 셀룰러 시스템을 위한 반복적인 자기간섭 채널 추정)

  • Shin, Changyong;Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In this paper, we propose an iterative self-interference (SI) channel estimation method for in-band full-duplex cellular systems that employ orthogonal frequency division multiple access (OFDMA) on downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) on uplink (UL), as in Long Term Evolution (LTE) systems. The proposed method first acquires coarse estimates of SI channels using DL signals and UL pilots, which are known to the base stations, and then refines the estimates by consecutively exploiting averaging in the frequency domain and channel truncation in the time domain. In addition, the method enhances the estimates further by iteratively executing this estimation procedure, and does not require any radio resources dedicated to SI channel estimation. Simulation results demonstrate that by significantly improving the SI channel estimation performance without requiring exact knowledge of the SI channel length, the proposed method achieves UL channel estimation performance and signal-to-interference-plus-noise ratio (SINR) performance very close to those in perfect SI cancellation.

Filter Size Determination Algorithms for Decision-Directed Channel Estimators in Wideband CDMA Mobile Communication Systems (광대역 CDMA이동통신 시스템의 결정지향 채널추정기를 위한 필터크기 결정 방법)

  • Rim, Min-Joong;Ryu, Chul;Ahn, Jae-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.5
    • /
    • pp.171-180
    • /
    • 2003
  • CDMA(Code Division Multiple Access) mobile communication systems require accurate channel estimation in the receiver to compensate the fading distortions. Instantaneous channel estimates are obtained by dividing the received symbol by the transmitted symbol and then refined by filtering to reduce the estimation variance. In the channel estimation filter, the determination of the filter size is a very important task which greatly affects the estimation quality. While conventional methods usually use only velocity estimators to determine the channel estimation filter size, this paper proposes a filter size determination method for decision-directed channel estimators considering the symbol error rate and the signal-to-noise ratio in addition to the velocity of the mobile station. This paper shows that the symbol error rate and the signal-to-noise ratio are important factors for the determination of the channel estimation filter size.

Performance Analysis of D2D Power Control To Compensate Channel Estimation Error

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.65-72
    • /
    • 2020
  • To improve the performance of D2D power control algorithm proposed in the previous work, three modified D2D power control algorithms are proposed to compensate the channel estimation error. Then, we evaluate the performance of three modified D2D power control algorithms in the channel estimation error environment. In real channel environment, the channel estimation is not perfect. To that end, the impact of imperfect channel estimation on the D2D power control algorithm, which was developed with the assumption of perfect channel estimation, has been analyzed in the previous work. Three modified D2D power control algorithms are based on 1) Retransmission, 2) SIR Margin, and 3) Retransmission and SIR Margin. Simulation results show that the Retransmission and SIR Margin approach shows best performance in the sense of the transmit power consumption and the latency.

Channel Estimation Based on LMS Algorithm for MIMO-OFDM System (MIMO-OFDM을 위한 LMS 알고리즘 기반의 채널추정)

  • Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1455-1461
    • /
    • 2012
  • MIMO-OFDM which is one of core techniques for the high-speed mobile communication system requires the efficient channel estimation method with low estimation error and computational complexity, for accurately receiving data. In this paper, we propose a channel estimation algorithm with low channel estimation error comparing with LS which is primarily employed to the MIMO-OFDM system, and with low computational complexity comparing with MMSE. The proposed algorithm estimates channel vectors based on the LMS adaptive algorithm in the time domain, and the estimated channel vector is sent to the detector after FFT. We also suggest a preamble architecture for the proposed MIMO-OFDM channel estimation algorithm. The computer simulation example is provided to illustrate the performance of the proposed algorithm.

Group-Sparse Channel Estimation using Bayesian Matching Pursuit for OFDM Systems

  • Liu, Yi;Mei, Wenbo;Du, Huiqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.583-599
    • /
    • 2015
  • We apply the Bayesian matching pursuit (BMP) algorithm to the estimation of time-frequency selective channels in orthogonal frequency division multiplexing (OFDM) systems. By exploiting prior statistics and sparse characteristics of propagation channels, the Bayesian method provides a more accurate and efficient detection of the channel status information (CSI) than do conventional sparse channel estimation methods that are based on compressive sensing (CS) technologies. Using a reasonable approximation of the system model and a skillfully designed pilot arrangement, the proposed estimation scheme is able to address the Doppler-induced inter-carrier interference (ICI) with a relatively low complexity. Moreover, to further reduce the computational cost of the channel estimation, we make some modifications to the BMP algorithm. The modified algorithm can make good use of the group-sparse structure of doubly selective channels and thus reconstruct the CSI more efficiently than does the original BMP algorithm, which treats the sparse signals in the conventional manner and ignores the specific structure of their sparsity patterns. Numerical results demonstrate that the proposed Bayesian estimation has a good performance over rapidly time-varying channels.

Channel Estimation Method Using the Correlation in the High-Speed Wireless Transmissions (고속 무선 전송에서 상관관계를 이용한 채널 추정방식)

  • Lee Joo-Hyoung;Kim Joo-Kyoung;Kim Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.63-71
    • /
    • 2005
  • This paper proposes the channel estimation method robust to severe frequency selective fading channels in O%M system using wide bandwidth for the high data rate transmission. DDCE, which uses data between the high correlated symbols, is usually used for channel estimation in the slow fading channels. DDCE can get high gains in the non-selective channels. As the bandwidth of system gets wider, it becomes more severe frequency selective fading environments so that the reliability of data becomes lower and error flow is occurred. FE method, this paper proposed, uses the relation between sub-carriers of OFDM in frequency selective fading channels so FE method gets some gains by adapting the power value at a target frequency to the mean value of channel estimated values of adjacent sub-carriers. Because FE uses only preamble unlike DDCE using data, it is independent of data rate related to the reliability of data and the number of multipath. Consequently, FE can obtain considerable gains in the wideband systems where the errorflow of DDCE is occurred, and FE is applicable to frequency selective fading environments.

  • PDF

Performance Improvement of PSAM Channel Estimation Method for OFDM Systems over Frequency-Selective Channel (주파수 선택적 채널에서의 OFDM 시스템을 위한 PSAM 채널 추정 기법의 성능 개선)

  • Kim, Young-Soo;Bae, Jeong-Gook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.235-243
    • /
    • 2012
  • In this paper, we propose a method to improve performance of pilot symbol assisted modulation(PSAM) channel estimation method for OFDM systems over frequency selective channel. When channel values are estimated, the low pilot density used for channel estimation increases not only the effective data rate but also power efficiency. Thus, the lower pilot density which is used for channel estimation is better for OFDM system. At first, we estimate the channel values which are located at the middle of adjacent pilots, and then all of the possible channel values are estiamted by using original pilot values and previously estimated pilot values. Furthermore, the error of estimated channel values is reduced by introducing guard interval which is designed acccording to maximum channel delay. Performance achieved with the proposed method is illustrated by simulation experiments in comparison with the existing methods in terms of mean squared error(MSE).