• Title/Summary/Keyword: Channel state information

Search Result 744, Processing Time 0.027 seconds

ODFM-Based Adaptive Channel Estimation Algorithms for IEEE 802.11ad WLAN

  • Nguyen-Thi, My-Kieu;Kim, Jinsang;Lee, Seungjoo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.6 no.1
    • /
    • pp.45-57
    • /
    • 2016
  • This paper proposes an adaptive channel estimation scheme for OFDM-based IEEE 802.11ad wireless local area network (WLAN). The standard supports two types of information of OFDM packets for estimating the communication channels, which are the channel estimation field (CEF) of preamble and pilot subcarriers. The CEF-based channel estimation provides better BER (bit error rate) performance at slow fading channel state, whereas the pilot-based channel estimation is good at fast fading channel state. Hence, a combined channel estimation method is introduced to improve the performance. The prediction of the channel state to select the proper channel estimation method is required. In this work, an adaptive channel estimation scheme is also proposed to improve the performance of channel estimation (CE). Basing on a channel quality indicator (CQI), the proper channel estimation method corresponding to the channel type is decided.

Degrees of Freedom of Multi-Cell MIMO Interference Broadcast Channels With Distributed Base Stations

  • Huang, Hongbing;Liu, Junyi;Zhang, Yi;Cai, Qing;Zhang, Bowei;Jiang, Fengwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.635-656
    • /
    • 2019
  • In this paper, we investigate the degrees of freedom (DoF) of a multi-cell multi-user multiple-input multiple-output (MIMO) interference broadcast channel (IBC) with non-cooperation distributed base stations (BS), where each BS serves users of its corresponding cell. When all BSs simultaneously transmit their own signals over the same frequency band in the MIMO IBC, the edge users in each cell will suffer the inter-cell interference (ICI) and inter-user interference (IUI) signals. In order to eliminate the ICI and IUI signals, a distributed space time interference alignment (DSTIA) approach is proposed where each BS has only limited access to distributed moderately-delay channel state information at the transmitter (CSIT). It is shown that the DSTIA scheme can obtain the appreciate DoF gains. In addition, the DoF upper bound is asymptotically achievable as the number of antenna at each BS increases. It is shown that the DSTIA method can get DoF gains over other interference alignment schemes with delayed CSIT in literature. Moreover, the DSTIA method can attain higher DoFs than the IA schemes with global CSIT for certain antenna configurations.

Performance Analysis of Block Turbo Coded OFDM System Using Channel State Information (채널상태정보를 이용하는 블록터보 부호화된 OFDM 시스템의 성능 분석)

  • Kim, Han-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.872-877
    • /
    • 2011
  • In this paper, the new decoding algorithm of Block Turbo Codes using Channel State Information(CSI), which is estimated to compensate for the distorted signal caused by multi-path fading, is proposed in order to improve error correction capacity during decoding procedure in OFDM system. The performance of the new decoding algorithm is compared to that of the conventional decoding algorithm without using channel state information under the Rayleigh fading channel. Experimental results showed that in case of only one iteration coding gains of up to 5.0dB~9.0dB can be obtained by applying the channel state information to the conventional decoding algorithm according to the modulation methods. In addition to that, the new decoding algorithm using channel state information at only one iteration shows a performance improvement of 3.5dB to 5.0dB when compared to the conventional decoding algorithm after four iterations. This leads to reduce the considerable amount of computation.

Burst Error Performance of LDPC codes on Perpendicular Magnetic Recording Channel (수직 자기기록 채널에서 연집에러에 따른 LDPC 부호의 성능)

  • Kim, Sang-In;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.868-873
    • /
    • 2008
  • In this paper, we analyze the burst error performance of LDPC codes on perpendicular magnetic recording(PMR) channel. When burst error is generated on PMR channel, we use channel state information(CSI) to set the LLR information of channel detector zero. We consider the rate 0.94 LDPC codes and use SOVA as channel detector with low complexity.

Performance Analysis of Wireless Communication System with FSMC Model in Nakagami-m Fading Channel (Nakagami-m 페이딩 채널에서 FSMC 모델에 의한 무선 통신시스템의 성능 분석)

  • 조용범;노재성;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1010-1019
    • /
    • 2004
  • In this paper, we represent Nakagami-m fading channel as finite-State Markov Channel (FSMC) and analyze the performance of wireless communication system with varying the fading channel condition. In FSMC model, the received signal's SNR is divided into finite intervals and these intervals are formed into Markov chain states. Each state is modeled by a BSC and the transition probability is dependent upon the physical characterization of the channel. The steady state probability and average symbol error rate of each state and transition probability are derived by numerical analysis and FSMC model is formed with these values. We found that various fading channels can be represented with FSMC by changing state transition index. In fast fading environment in which state transition index is large, the channel can be viewed as i.i.d. channel and on the contrary, in slow fading channel where state transition index is small, the channel can be represented by simple FSMC model in which transitions occur between just adjacent states. And we applied the proposed FSMC model to analyze the coding gain of random error correcting code on various fading channels via computer simulation.

Low-Overhead Feedback Topology Design for the K-User MIMO Interference Alignment

  • Jin, Jin;Gao, Xiang-Chuan;Li, Xingwang;Cavalcante, Charles Casimiro;Li, Lihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5304-5322
    • /
    • 2018
  • Since designing a feedback topology is a practical way to implement interference alignment at reduced cost of channel state information (CSI) feedback, six feedback topologies have been presented in prior works for a K-user multiple-input multiple-output interference channel. To fully reveal the potential benefits of the feedback topology in terms of the saving of CSI overhead, we propose a new feedback topology in this paper. By efficiently performing dimensionality-decreasing at the transmitter side and aligning interference signals at a subset of receivers, we show that the proposed feedback topology obtains substantial reduction of feedback cost over the existing six feedback designs under the same antenna configuration.

A Modulation and Channel State Estimation Algorithm Using the Received Signal Analysis in the Blind Channel (블라인드 채널에서 수신 신호 분석 기법을 사용한 변조 및 채널 상태 추정 알고리즘)

  • Cho, Minhwan;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1406-1409
    • /
    • 2016
  • In this paper, we propose the heuristic signal grouping algorithm to estimate channel state value over full blind communication situation which means that there is no information about the modulation scheme and the channel state information between the transmitter and the receiver. Hereafter, using the constellation rotation method and the probability density function(pdf) the modulation scheme is determined to perform automatic modulation classification(AMC). Furthermore, the modulation type and a channel state value estimation capability is evaluated by comparing the proposed scheme with other conventional techniques from the simulation results in terms of the symbol error rate(SER) and the root mean square error (RMSE).

Segment Training Based Individual Channel Estimation for Multi-pair Two-Way Relay Network with Power Allocation

  • He, Xiandeng;Zhou, Ronghua;Chen, Nan;Zhang, Shun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.566-578
    • /
    • 2018
  • In this paper, we design a segment training based individual channel estimation (STICE) scheme for the classical two-way relay network (TWRN) with multi-pair sources (MPS) and amplify-and-forward (AF). We adopt the linear minimum mean square error (LMMSE) channel estimator to minimize the mean square error (MSE) without channel estimation error, where the optimal power allocation strategy from the relay for different sources is obtained. Then the MSE gains are given with different source pairs among the proposed power allocation scheme and the existing power allocation schemes. Numerical results show that the proposed method outperforms the existing ones.

Using Common Channel, Handoff method from $^{rd}$ generation Asynchronous W-COMA System to Synchronous System (공동채널을 이용한 3세대 비동기 W-COMA 시스템에서 동기 시스템으로 핸드오프를 위한 방식)

  • 이유로;양신현;이호근;박재홍
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.21-24
    • /
    • 2000
  • In this paper, We introduce effective handoff method from W-COMA system of 3$^{rd}$ generation to 15-95 system of 2$^{nd}$ generation. In case of this handoff, Ms should know long code state using traffic channel, timing information and pilot offset of 26 synchronous system during the compressed mode. So We establish additional common channel in order to obtain handoff information. Common channel transmits same information from all base stations and provides MS with timing information of zero offset. long code state and timing of super frame for sync. channel. Therefore during the compressed mode. MS can obtain information for handoff using common channel..

  • PDF

Channel Capacity Analysis for Indoor PLC Networks with Considering the Effect of Loading conditions of Networks on Channel State Information (네트워크 부하 조건의 변화가 채널 상태 정보에 미치는 영향을 고려한 옥내 전력선 통신 채널의 채널 용량 분석)

  • Shin, Jae-Young;Jeong, Ji-Chai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.252-256
    • /
    • 2011
  • We analyze the channel capacity with considering the effect of the loading conditions of indoor PLC networks on channel state information. We consider various numbers of load for two kinds of the networks with regular length branches and a deployed network of indoor PLC. For calculating the channel capacity degradation, two noise scenarios and impedances are considered. From the simulation results, we suggest the robust regression lines for modeling the channel capacity degradation. In the cases of 0 $\Omega$ and $Z_0$ loads, natural log and linear function curve show the best goodness of fit, respectively. For the deployed indoor PLC network with 0 $\Omega$ loads, compared with the networks with regular length branches, the goodness of fit decreases by the amount of 0.12 and 0.15 for low noise and high noise scenarios, respectively. Using the regression lines, we can estimate the channel capacity degradation without measurement.