• Title/Summary/Keyword: Channel shape

Search Result 631, Processing Time 0.035 seconds

Analysis on Forward/Backward Current Distribution and Off-current for Doping Concentration of Double Gate MOSFET (DGMOSFET의 도핑분포에 따른 상 · 하단 전류분포 및 차단전류 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2403-2408
    • /
    • 2013
  • This paper has analyzed the change of forward and backward current for channel doping concentration to analyze off-current of double gate(DG) MOSFET. The Gaussian function as channel doping distribution has been used to compare with experimental ones, and the two dimensional analytical potential distribution model derived from Poisson's equation has been used to analyze the off-current. The off-current has been analyzed for the change of projected range and standard projected range of Gaussian function with device parameters such as channel length, channel thickness, gate oxide thickness and channel doping concentration. As a result, this research shows the off-current has greatly influenced on forward and backward current for device parameters, especially for the shape of Gaussian function for channel doping concentration.

Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO2 as Working Fluid (초임계 이산화탄소를 작동유체로 하는 인쇄기판형 열교환기의 형상변수에 따른 전열성능 수치모사)

  • Jeon, Sang Woo;Ngo, Ich-long;Byon, Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.737-744
    • /
    • 2016
  • The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical $CO_2$ power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical $CO_2$ as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

Analysis of Drainage Structure Based on the Geometric Characteristics of Drainage Density and Source-Basin (배수밀도와 수원유역의 기하학적 특성을 기반으로 한 배수구조에 대한 해석)

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.373-382
    • /
    • 2007
  • The exact resolution of channel initiation points is not so easy because of the dynamic behaviors of water movement on the hillslope. To this end, Kim, Joocheol and Kim, Jaehan(2007) have represented the channel network in real world basins for slope-area regimes using DEM. This study is its sequential content and then proposes the reliabilities of the hypothetical channel networks identified from DEM, which are assessed based on the geometric characteristics of drainage density and source-basin. The resulting drainage structures on the natural basin can be found to be depicted remarkably depending on the hypothetical channel network applied by slop-area threshold criterion. In addition, it is shown that there is a wonderful geometric similarity between the shapes of source- basin in a geomorphologically homogeneous region. Area threshold criterion could have restricted the shape of source-basin, so that it might bring about the incorrect drainage structures. But the hypothetical channel networks identified from DEM deserves special emphasis on expressing the space-filling structures nonetheless.

AN OPTIMUM DESIGN STUDY OF INTERLACING NOZZLE BY ANALYZING FLUID FLOW INSIDE INTERLACING NOZZLES

  • Juraeva Makhsuda;Ryu Kyung Jin;Kim Sang Dug;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.93-97
    • /
    • 2005
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. This study investigates the effect of interlacing nozzle geometry on the interlacing process. The geometries of interlacing nozzles with multiple air inlets located across the width of a yarn channels are investigated. The basic interlacing nozzle is the yarn channel, with a perpendicular single air inlet in the middle. The yarn channel shapes are cross sections with semicircular or rectangular shapes. This paper presents three doubled sub air inlets with main air inlet and one of them is slightly inclined doubled sub air inlets with main air inlet. The compressed air coming out from the inlet hits the opposing wall of the yarn channel, divides into two branches, flows trough the top side of yarn channel, joins with the compressed air coming out from the sub air inlet and then creates two free jets at both ends of the yarn channel. The compressed air moves in the shape of two opposing directional vortices. The CFD-FASTRAN was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this paper.

  • PDF

Decision-directed Channel Estimation for QAM-modulated OFDM Systems (QAM 변조방식의 OFDM 시스템을 위한 결정지향 채널추정 방법)

  • Rim, Min-Joong;Ahn, Jae-Min;Kim, Yeon-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.11
    • /
    • pp.21-27
    • /
    • 2002
  • When decision-directed channel estimation is used for QAM-OFDM systems, the optimal shape of the two-dimensional filter depends on the amplitudes of the modulated symbols as well as the channel characteristics such as delay spread, Doppler frequency, and signal-to-noise ratio. While most conventional channel estimation methods did not consider the amplitudes of the modulated symbols because of the large computational complexity, we propose a simple channel estimation method for multi-level-amplitude-modulated systems. The proposed method can effectively reduce the noise variance of the estimates with small-sized filtering and there is a possibility of reducing the implementation cost and producing better results by avoiding the bias due to large filter sizes.

Experimental Study on Levee Seepage Considering Dynamic Head in a Trapezoidal Open-Channel (사다리꼴 개수로에서 동수두를 고려한 제방 침투에 관한 실험연구)

  • Im, Dongkyun;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.239-245
    • /
    • 2009
  • Levees, the hydro-engineering structure, are similar to earth dams in aspects of shape and structure. However, they are different from earth dams in the external force conditions. As a levee is the structure that is complexly affected by the flow and the water stage in the river, it may be unreasonable to analyze the seepage safety as previous studies derived from the neglect of river flow. In this study, an experiment was conducted to investigate flow structures in a trapezoidal open-channel and the influence of the channel flow on the seepage through a levee. Flow structures in a trapezoidal open-channel were distinguished from a rectangular open-channel such as velocity and bottom shear stress distributions. In case with the flow velocity of 0.5 m/s, seepage water heads were higher 10 percent as compared with the stagnant case. This result is caused by dynamic heads, secondary currents, turbulent fluctuation forces, and various physical factors. It is suggested that external force boundary considered in terms of the flow as well as the water stage is proper to seepage analyses.

Effects of Reduced Sediment Dynamics on Fluvial Channel Geomorphology in the Jiseok River (유사계의 역동성 감소가 지석천 충적하도의 지형변화에 미치는 영향)

  • Ock, Gi-Young;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.445-454
    • /
    • 2012
  • The present study aims to investigate the long-term channel morphological changes derived from channelization, embankment and levee construction works in unregulated fluvial channel of the Jiseock River. Analyses of aerial photographs taken past (Year 1966) and recent (Year 2002) showed the temporally remarkable changes in channel planform such as channel shape, bar migration, vegetation encroachment in bar. During the period, the natural single threading changed into braided types together with decreasing sinuosity by 9.2%, increasing vegetation occupied bar ranged 97% of total bars area. Because such channel morphological changes are closely similar to those in dam downstream channels, we assume that both/either flow regime alteration and/or sediment transport discontinuity may be critical for the fixed channel and spread of vegetated bars even in unregulated river without dam reservoir upstream. We found more reduced frequency and magnitude of flooding water level comparing with past, but no significant alteration of inter annual water level variation. Bed material has been coarsened by 4~5 times and the riverbed has been degraded in overall channel but aggraded locally in conjunction reach of tributaries. The results indicates that reduced sediment dynamics in fluvial channel which derived by bed material coarsening, river bed degradation and unbalanced sediment transport capacity between tributary and mainstem can be a causal factor to trigger channel morphological changes even in unregulated rivers.

A Study on Hydrodynamic Force Characteristics of Manta-type Unmanned Undersea Vehicle with the Parameter of Appendage Shape (Manta형 무인잠수정의 부가물 형상에 따른 동유체력 특성에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.309-314
    • /
    • 2009
  • The influence of different appendage shape on the characteristics of hydrodynamic forces on Manta-type Unmanned Undersea Test Vehicle(MUUTV) was discussed experimentally. Fuselage only MUUTV model and two types of MUUTV model with different appendage geometries were considered as the subject of discussion Oblique tow experiment was carried out in circulating water channel with three MUUTV models. A point of difference in hydrodynamic force characteristics among three models was indicated. Furthermore, the linear hydrodynamic derivatives obtained from model experiment were compared with theoretical calculation results from slender body theory, added mass theory and etc. Based on the hydrodynamic force characteristics, motion stability of two types of MUUTV model with different appendage geometries was compared each other. Through the above analysis, the more suitable shape of appendage geometry was made clear.

Compatibility Test of the Capsule with Cone Shape Bottom Guide Structures to the HANARO Reactor (원추형 하단부 구조를 갖는 캡슐의 하나로와의 양립성시험)

  • Choi, M.H.;Cho, M.S.;Choo, K.N.;Park, S.J.;Kim, B.G.;Kang, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.444-449
    • /
    • 2004
  • The design modification of bottom guide structures of the instrumented capsule, which is used for the irradiation test in the HANARO reactor, was required because of the trouble of the bottom guide arm's pin during irradiation. The previous structure with 3-pin arms was changed into the cone shape of one body. The specimens of the bottom end cap ring with three different sizes (${\Phi}68/70/72mm$) were designed and manufactured. The out-pile tests for the capsule with previous and new three bottom guide structures were performed in the one-channel flow test facilities. In order to evaluate the compatibility with HANARO and the structural integrity of the capsule, a loading/unloading, a pressure drop, a thermal performance, a vibration, and an endurance test were conducted. From out-pile test results, the capsule with the cone shape bottom guide structures was found to be more stable than the previous structure and the optimized size of the bottom guide structure selected was 70mm in diameter. It is expected that the new bottom guide structures will be applicable to all material and special capsules which will be designed and manufactured for the irradiation tests in the future.

  • PDF

A Study on Hydrodynamic Force Characteristics of Manta-type Unmanned Undersea Vehicle with the Parameter of Appendage Shape (Manta형 무인잠수정의 부가물 형상에 따른 동유체력 특성에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.5-6
    • /
    • 2009
  • The influence of different appendage shape on the characteristics of hydrodynamic forces on Manta-Type Unmanned Undersea Test Vehicle(MUUTV) was discussed experimentally. Fuselage only MUUTV model and two types of MUUTV model with different appendage geometries were considered as subject of discussion Oblique tow experiment was carried out in circulating water channel with three MUUTV models. A point of difference in hydrodynamic force characteristics among three models was compared and discussed. Furthermore, the linear hydrodynamic derivatives obtained from model experiment were compared with theoretical calculation results from slender body theory, added mass theory and ete. Based on the hydrodynamic force characteristics, motion stability of two types of MUUTV model with different appendage geometries was discussed and compared each other. Through the above analysis, the more suitable shape of appendage geometry was made clear.

  • PDF