• Title/Summary/Keyword: Channel noise modeling

Search Result 46, Processing Time 0.035 seconds

An analysis of the short-term variation of the power line as a communication channel (전력선 통신 채널의 단 구간 변화에 대한 분석)

  • Park, Chong-yeon;Choi, Won-Ho;Jung, Kwang-Hyun
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.21-27
    • /
    • 2007
  • The power line channel has time-variant characteristics caused by various kind of electrical devices. This characteristics are synchronized with the main voltage by their own characteristics. The main factors of disturbance are the variation of the channel impedance and noises. In other papers, the synchronous noise modeling has been achieved. But the modeling is not satisfied simultaneously with the time domain and the frequency domain and there are not any discussion about short-term variations of the channel impedance which cause to the signal fading. Therefore, this paper researched to solve problems about the signal fading by analyzing the short-term variation of the channel impedance, and proposed the synchronous noise modeling which is satisfied simultaneously in the time domain and the frequency domain.

  • PDF

Analytical Noise Parameter Model of Short-Channel RF MOSFETs

  • Jeon, Jong-Wook;Park, Byung-Gook;Lee, Jong-Duk;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.88-93
    • /
    • 2007
  • In this paper, a simple and improved noise parameter model of RF MOSFETs is developed and verified. Based on the analytical model of channel thermal noise, closed form expressions for four noise parameters are developed from proposed equivalent small signal circuit. The modeling results show a excellent agreement with the measured data of $0.13{\mu}m$ CMOS devices.

Investigation of Thermal Noise Factor in Nanoscale MOSFETs

  • Jeon, Jong-Wook;Park, Byung-Gook;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 2010
  • In this paper, we investigate the channel thermal noise in nanoscale MOSFETs. Simple analytical model of thermal noise factor in nanoscale MOSFETs is presented and it is verified with accurately measured noise data. The noise factor is expressed in terms of the channel conductance and the electric field in the gradual channel region. The proposed noise model can predict the channel thermal noise behavior in all operating bias regions from the long-channel to nanoscale MOSFETs. From the measurement results, we observed that the thermal noise model for the long-channel MOSFETs does not always underestimate the short-channel thermal noise.

A Fundamental Study for Establishment of Channel Data Base in Power-Line Communications (전력선 통신 채널 Data Base 구축을 위한 기본 연구)

  • Oh Hui-Myoung;Kim Kwan-Ho;Lee Won-Tae;Lee Jae-Jo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.107-111
    • /
    • 2003
  • In the power-line communication systems, there are many factors of noise and attenuation in the power-line channels, because they were designed for not the communication but the power transmission. Also the transfer function of the channels is highly changed with the topology and the load of the power-lines. To cope with these poor channel situation, channel modeling, one of the many studies in progress, is being studied hard. Channel modeling is essential to apply the active schemes to overcome the bad channel(e.g. modulation technique, channel coding, signal coupling & filtering, etc.) to the power-line communications. In this paper, we have realized the statistical model(this model is suggested as the channel modeling method for the power-line channels) that is combined the transfer function with the various noises. And we have compared and examined the results with the measured data. Also we have studied the plan which can effectively establish the channel data base for the channel information consisted of the parameters that are derived from this modeling, and we have studied the plan to utilize the data base.

Design of CMOS Op Amps Using Adaptive Modeling of Transistor Parameters

  • Yu, Sang-Dae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • A design paradigm using sequential geometric programming is presented to accurately design CMOS op amps with BSIM3. It is based on new adaptive modeling of transistor parameters through the operating point simulation. This has low modeling cost as well as great simplicity and high accuracy. The short-channel dc, high-frequency small-signal, and short-channel noise models are used to characterize the physical behavior of submicron devices. For low-power and low-voltage design, this paradigm is extended to op amps operating in the subthreshold region. Since the biasing and modeling errors are less than 0.25%, the characteristics of the op amps well match simulation results. In addition, small dependency of design results on initial values indicates that a designed op amp may be close to the global optimum. Finally, the design paradigm is illustrated by optimizing CMOS op amps with accurate transfer function.

A Study on the Modeling for Reducing High-Speed Train KTX's Interior Noise using Active Noise Control Technique (능동소음제어를 이용한 고속철도 KTX의 내소음 저감을 위한 모델링에 관한 연구)

  • Kim, Young-Min;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1725-1731
    • /
    • 2012
  • In this paper, experiments were conducted to validate the importance and necessity of modeling. The modeling was performed using 120Hz and 280Hz noise of KTX main interior noise frequency. After the modeling, In order to solve the system instability by the additional path that exists between the control speaker and the error microphone, the secondary path was estimated. Next, simulations were performed to verify the modeling's necessity and importance. Thought the simulation results, we confirmed that the system with the modeling is more effective for noise reduction than without the modeling.

Analysis and extraction method of noise parameters for short channel MOSFET thermal noise modeling (단채널 MOSFET의 열잡음 모델링을 위한 잡음 파라메터의 분석과 추출방법)

  • Kim, Gue-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2655-2661
    • /
    • 2009
  • In this paper, an accurate noise parameters for thermal noise modeling of short channel MOSFET is derived and extracted. Fukui model for calculating the noise parameters of a MOSFET is modified by considering effects of parasitic elements in short channel, and it is compared with conventional noise model equation. In addition, for obtaining the intrinsic noise sources of devices, noise parameters(minimum noise figure $F_{min}$, equivalent noise resistance $R_n$ optimized source admittance $Y_{opt}=G_{opt}+B_{opt}$) in submicron MOSFETs is extracted. With this extraction method, the intrinsic noise parameters of MOSFET without effects of probe pad and extrinsic parasitic elements from RF noise measurements can be directly obtained.

Multi-channel ANC System Modeling for Reducing KTX Interior Noise (고속철도 실내소음 저감을 위한 다중채널 ANC 시스템 모델링)

  • Jang, Hyeon-Seok;Kim, Sae-Han;Lee, Tae-Oh;Koo, Kyung-Wan;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1069-1076
    • /
    • 2012
  • We use largely two methods, how to control the noise of the KTX, they are the passive noise control method and the active noise control method. The passive noise control has been used in a variety of ways since the KTX opening day, but lately it has shown the technical limitations by being dropped sharply. So, it is getting important to conduct the research about ANC that is able to reduce the ambient noise when the environmental-factor changes and be installed easily. To reduce a three-dimensional closed-space sound field like a car of a high-speed rail is hard to do using single channel ANC control system. Therefore we have to model the paths of the noise exactly for reducing the noise. And the control speakers and the error mics should be designed for optimal position. In this paper, we designed the transfer functions for modeling the noise paths under the influence of the distance between control speakers & error mics and primary noise speaker in TEST-BED where there is modeled as actual interior of KTX. We have made the modeling and the simulations of interior environment of KTX car by using three frequency bands of 120Hz, 280Hz, 360Hz. After the modeling, we compared the performance of active noise control and also we analyzed what to affect with difference in distance. After comparing of the performance using Pure Tone 120Hz, 280Hz, 360Hz at each modeling and then we simulated ANC for KTX's interior noise which we measured really and analyzed.

Transform domain Wyner-Ziv Coding based on the frequency-adaptive channel noise modeling (주파수 적응 채널 잡음 모델링에 기반한 변환영역 Wyner-Ziv 부호화 방법)

  • Kim, Byung-Hee;Ko, Bong-Hyuck;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.144-153
    • /
    • 2009
  • Recently, as the necessity of a light-weighted video encoding technique has been rising for applications such as UCC(User Created Contents) or Multiview Video, Distributed Video Coding(DVC) where a decoder, not an encoder, performs the motion estimation/compensation taking most of computational complexity has been vigorously investigated. Wyner-Ziv coding reconstructs an image by eliminating the noise on side information which is decoder-side prediction of original image using channel code. Generally the side information of Wyner-Ziv coding is generated by using frame interpolation between key frames. The channel code such as Turbo code or LDPC code which shows a performance close to the Shannon's limit is employed. The noise model of Wyner-Ziv coding for channel decoding is called Virtual Channel Noise and is generally modeled by Laplacian or Gaussian distribution. In this paper, we propose a Wyner-Ziv coding method based on the frequency-adaptive channel noise modeling in transform domain. The experimental results with various sequences prove that the proposed method makes the channel noise model more accurate compared to the conventional scheme, resulting in improvement of the rate-distortion performance by up to 0.52dB.

Multiple-Channel Active Noise Control by ANFIS and Independent Component Analysis without Secondary Path Modeling

  • Kim, Eung-Ju;Lee, Sang-yup;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.22.1-22
    • /
    • 2001
  • In this paper we present Multiple-Channel Active Noise Control[ANC] system by employing Independent Component Analysis[ICA] and Adaptive Network Fuzzy Inference System[ANFIS]. ICA is widely used in signal processing and communication and it use prewhiting and appropriate choice of non-linearities, ICA can separate mixed signal. ANFIS controller is trained with the hybrid learning algorithm to optimize its parameters for adaptively canceling noise. This new method which minimizes a statistical dependency of mutual information(MI) in mixed low frequency noise signal and there is no need to secondary path modeling. The proposed implementations achieve more powerful and stable noise reduction than Filtered-X LMS algorithms which is needed for LTI assumption and precise secondary error

  • PDF