• Title/Summary/Keyword: Channel measurements

Search Result 539, Processing Time 0.024 seconds

Study on an Electrode Attachment Method Suitable for Underwater Electromyography Measurements

  • Han, Seul-ki;Park, Jung-seo;Nam, Taek-gil
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.2
    • /
    • pp.95-98
    • /
    • 2015
  • PURPOSE: This study was conducted to devise a method of preventing water infiltration into the surface electrodes during EMG measurements underwater and on the ground and to check the reliability of Electromyography (EMG) measurements when underwater. METHODS: Six healthy adults were selected as subjects in this study. The measurements in this study were conducted in pool dedicated to underwater exercise and physical therapy room in the hospital building. An MP150 (Biopac Systems, US, 2010) and a BioNomadix 2-channel wireless EMG transmitter (Biopac Systems, US, 2012) was used to examine the muscle activity of rectus femoris, biceps femoris, tibialis anterior, gastrocnemius of dominant side. The subjects repeated circulation tasks on the ground for more than 10 min for enough surface electrode attachment movement. After a 15-min break, subjects performed the circulation task underwater(water depth 1.1m, water temperature $33.5^{\circ}C$, air temperature $27^{\circ}C$), as on the ground, for more than 10 min, and the MVIC of each muscle was measured again. SPSS v20.0 was used for all statistical computations. RESULTS: The maximum voluntary isometric contraction (MVIC) values between the underwater and on the ground measurements showed no significant differences in all four muscles and showed a high intraclass correlation coefficient (ICC) of >0.80. CONCLUSION: We determined that EMG measurements obtained underwater could be used with high reliability, comparable to ground measurements.

Investigation of Characteristics of Waves Generated in Two-Dimensional Wave Channel (2차원 조파수조에서의 파 생성 특성 조사)

  • Ahn, Jae-Youl;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.68-75
    • /
    • 2013
  • This paper investigates the characteristics of waves generated by a flap-type wave maker in a two-dimensional wave channel. Measurements are carried out for various water depths, wave heights, periods, and lengths capacitance-type wave height gages. The experimental results are shown to satisfy the dispersion relation of the linear wave theory. For waves with a small height and long period, the wave profiles agree well with those of the linear wave theory. However, as the wave height and period become higher and shorter, respectively, it is shown that the wave profiles measured in the present experiments are different from the linear wave profiles, and the measured wave heights are smaller than the target wave heights, which may be due to the non-linearity of the waves. As the wave progresses toward the channel end, the wave height gradually decreases. This reduction in the wave height along the wave channel is explained by the wave energy dissipation due to the friction of the side walls of the channel. The performance of the wave absorber in the channel is found to be acceptable from the results of the wave reflection tests.

Channel Allocation in Multi-radio Multi-channel Wireless Mesh Networks: A Categorized Survey

  • Iqbal, Saleem;Abdullah, Abdul Hanan;Hussain, Khalid;Ahsan, Faraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1642-1661
    • /
    • 2015
  • Wireless mesh networks are a special type of broadcast networks which cover the qualifications of both ad-hoc as well as infrastructure mode networks. These networks offer connectivity to the last mile through hop to hop communication and by comparatively reducing the cost of infrastructure in terms of wire and hardware. Channel assignment has always been the focused area for such networks specifically when using non-overlapping channels and sharing radio frequency spectrum while using multiple radios. It has always been a challenge for mesh network on impartial utilization of the resources (channels), with the increase in users. The rational utilization of multiple channels and multiple radios, not only increases the overall throughput, capacity and scalability, but also creates significant complexities for channel assignment methods. For a better understanding of research challenges, this paper discusses heuristic methods, measurements and channel utilization applications and also examines various researches that yield to overcome this problem. Finally, we highlight prospective directions of research.

Development of Code-Domain Power module for CDMA signal (CDMA 신호의 Code Domain Power 모듈 개발)

  • Lee, Young Kyo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This paper describes the measurements that provide a characterization of the code-domain channels of a CDMA base station transmitter. One of the measurements, called code-domain power(CDP), provides the distribution of power in the code domain channels. This measurement can be used to verify that the various channels are at expected power levels and to determine when one code channel is leaking energy into the other code channels. We develop module of CDP measurement in the CDMA system.

LIMITATIONS OF SPHERE ANEMOMETRY FOR LOW GAS VELOCITY MEASUREMENTS

  • Han, J.Y.;O.F. Turan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.297-304
    • /
    • 1997
  • Sphere anemometry technique is re-visited for low gas velocity measurements during full-scale fire tests. This technique has the advantage of requiring only one channel per sphere for data acquisition, in addition to being cheap and rugged, The results indicate that the technique is useful for small fuel load burns with low radiation levels. For large fuel loads, the usefulness is up to sprinkler activation temperatures.

  • PDF

A new MeSFET channel current model including bias-dependent dispersion effect (바이어스 효과를 포함하는 GaAs MESFET의 새로운 비선형 채널전류 모형)

  • 노태문;김영식;김영웅;박위상;김범만
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.17-26
    • /
    • 1997
  • A enw channel current model of GaAs MeSFET suitagle for applications to microwave CAD has been developed. The current model includes the bias-dependent frequency dispersion effects and its parameters are extracted from the pulsed I-V measurements at several quiescent bias points. The model is verified by applying to the nonlinear circuit designs of power amplifier and MMIC mixer.

  • PDF

Channel Analysis of Wireless Sensor Networks (무선 센서 네트워크의 채널 분석)

  • Jung, Kyung-Kwon;Lee, Yong-Gu;Eom, Ki-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1009-1010
    • /
    • 2006
  • In this paper we present the results of measurements that have been performed in order to obtain more accurate indoor channel models to feed realistic simulation for the wireless sensor network technology. This may contribute to obtain more reliable results and analysis of wireless sensor networks.

  • PDF

Three-Dimensional Characterizing Analysis of Astronomic CCDs with a deep depletion (깊은 공핍층을 가지는 우주항공용 촬상소자의 3 차원 특성 분석)

  • Kim, M. H.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.228-229
    • /
    • 2000
  • Buried channel JET-X CCDs (Joint European X-ray Telescope Charge Coupled Devices: EEV CCD12) with a deep depletion have been analyzed to provide an optimized condition for a charge storage and transfer. A maximum charge capacity has been found for the supplementary narrow channel by considering the potential distribution as a function of a mobile charge. Analysis for the depletion edges of JET-X CCDs have been successfully performed, showing good agreement with the depths estimated from X-ray detection efficiency measurements [1]. (omitted)

  • PDF

Turbulence Characteristics in a Circular Open Channel by PIV Measurements

  • Kim, Sun-Gu;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.930-937
    • /
    • 2011
  • The characteristics of mean velocity and turbulence have been analyzed in the circular open channel flow using PIV measurement data for a wide range of water depth. The measured data are fitted to a velocity distribution function over the whole depth of the open channel. Reynolds shear stress and mean velocity in wall unit are compared with the analytic models for fully-developed turbulent boundary layer. Both the mean velocity and Reynolds shear stress have different distributions from the two-dimensional boundary layer flow when the water depth increases over 50% since the influence of the side wall penetrates more deeply into the free surface. The cross-stream Reynolds normal stress also has considerably different distribution in view of its peak value and decreasing rate in the outer region whether the water depth is higher than 50% or not.

PIV Investigations of the Flow Mixing Enhancement by Pulsatile Flow in a Grooved Channel (맥동유동에 의한 그루브 채널내 유동혼합 촉진에 관한 PIV 이용 연구)

  • 김동욱;김서영;이대영;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.324-331
    • /
    • 2004
  • Particle Image Velocimetry (PIV) measurements have been carried out to investigate the pulsatile flow characteristics in a triangular grooved channel. The results showed that a vortex was generated at the tip of the groove and flowed into the groove rotating inside during the acceleration phase of the main stream promoting the mixing of the fluid. Then, at the deceleration phase of the main stream, the vortex entrained fluid from the relatively slow moving main stream to grow bigger than the groove size. Finally the vortex was ejected to the main stream carrying the fluid away from the groove, resulting in the enhancement of mixing between the stagnant fluid in the groove and the main stream in the channel. It was found that the fluid mixing enhancement is maximized when the pulsatile period is the same as the time duration which the vortex takes to grow larger enough to fill the groove and to be ejected to the main stream.