• 제목/요약/키워드: Channel materials

검색결과 895건 처리시간 0.035초

Dependence of $O_2$ Plasma Treatment of Cross-Linked PVP Insulator on the Electrical Properties of Organic-Inorganic Thin Film Transistors with ZnO Channel Layer

  • Gong, Su-Cheol;Shin, Ik-Sup;Bang, Suk-Hwan;Kim, Hyun-Chul;Ryu, Sang-Ouk;Jeon, Hyeong-Tag;Park, Hyung-Ho;Yu, Chong-Hee;Chang, Ho-Jung
    • 마이크로전자및패키징학회지
    • /
    • 제16권2호
    • /
    • pp.21-25
    • /
    • 2009
  • The organic-inorganic thin film transistors (OITFTs) with ZnO channel layer and the cross-linked PVP (Poly-4-vinylphenol) gate insulator were fabricated on the patterned ITO gate/glass substrate. ZnO channel layer was deposited by using atomic layer deposition (ALD). In order to improve the electrical properties, $O_2$ plasma treatment onto PVP film was introduced and investigated the effect of the plasma treatments on the electrical properties of the OITFTs. The field effect mobility and sub-threshold slope (SS) values of the OITFT decreased slightly from 0.24 to 0.16 $cm^2/V{\cdot}s$ and from 9.7 to 9.2 V/dec, respectively with increasing RF power from 30 to 50 Watt. The $I_{on/off}$ ratio was about $10^3$ for all samples with $O_2$ plasma treatment.

  • PDF

비정질 하프늄인듐징크옥사이드 산화물 반도체의 공정 파워에 따른 트랜지스터의 전기적 특성 연구 (Study on the Electrical Properties of Amorphous HfInZnO TFTs Depending on Sputtering Power)

  • 유동윤;정유진;김도형;주병권;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.674-677
    • /
    • 2011
  • The dependency of sputtering power on the electrical performances in amorphous HIZO-TFT (hafnium-indium-zinc-oxide thin film transistors) has been investigated. The HIZO channel layers were prepared by using radio frequency (RF) magnetron sputtering method with different sputtering power at room temperature. TOF-SIMS (time of flight secondary ion mass spectrometry) was performed to confirm doping of hafnium atom in IZO film. The field effect mobility (${\mu}FE$) increased and threshold voltage ($V_{th}$) shifted to negative direction with increasing sputtering power. This result can be attributed to the high energy particles knocking-out oxygen atoms. As a result, oxygen vacancies generated in HIZO channel layer with increasing sputtering power resulted in negative shift in Vth and increase in on-current.

딤플 패턴 최적화를 통한 고체산화물 연료전지 분리판의 흐름 균일도 향상 (Enhancing Flow Uniformity of Gas Separator for Solid Oxide Fuel Cells by Optimizing Dimple Patterns)

  • 쿠엔;이동근;안국영;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.331-339
    • /
    • 2021
  • This study presents a novel way to enhance uniformity of the gas flow inside the solid oxide fuel cell (SOFC), which is critically important to fuel cell performance, by using dimples. A pattern of dimple, which works as a flow distributor/collector, is designed at the inlet and outlet section of a straight channel gas separator. Size of the dimples and the gap between them were changed to optimize the flow uniformity, and any change in size or gap is considered as one design. The results show that some dimple patterns significantly enhance the uniformity compared to baseline, about 4%, while the others slightly reduce it, about 1%. Besides, the dimple pattern also affects to the pressure drop in the flow channel, however the pressure drop in all cases are negligible (less than 26.4 Pa).

등통로각압축공정을 이용하여 제작된 Cu-15wt.%Ag 미세복합재료의 미세구조 및 기계적, 전기적 특성 (Mechanical and Electrical Properties of Cu-15wt.%Ag Microcomposites Processed by Equal Channel Angular Pressing)

  • 조규진;홍순익
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.128-136
    • /
    • 2011
  • Equal channel angular pressing (ECAP) with intermediate heat treatment was employed to optimize the strength of Cu-15 wt.%Ag. Changes in microstructure, electrical properties and mechanical properties were studied as a function of pressing methods and heat treatment. ECAPed Cu-15wt.%Ag exhibited ultrafine-grained microstructures with the shape and distribution of Ag-rich lamellae dependent on the processing routes. For route A in which the sample was pressed without rotation between each pass, the initial dendrites of Ag-rich phase were elongated along the shear direction and developed into elongated filaments. For route C in which the sample was rotated by 180 degree after each pass, the morphology of initial dendrites of Ag-rich phase was not much modified and the networked structure remained even after 8 passes of ECAP. For route Bc in which the sample was rotated by 90 degree after each pass, the initial dendrites became finer by fragmentation with no pronounced change of the shape and distribution of Ag-rich lamellae. The strength of Cu-15wt.%Ag ECAPed using route Bc was found to be greater than those ECAPed using route A, suggesting that the substructural strengthening is more effective in strengthening than the interface strengthening.

지리산 주변 산지하천의 step-pool 구조 특성 (Characteristics of step-pool structure in the mountain streams around Mt. Jiri)

  • 김기흥;정혜련
    • 한국수자원학회논문집
    • /
    • 제51권4호
    • /
    • pp.313-322
    • /
    • 2018
  • Step의 높이는 하상재료 입경의 크기와 거의 같은 상관관계가 있으며, 하도경사에 따라 증가하고, 하도 폭과 step 파장은 거의 같은 크기로서 하도경사가 증가하면 step 파장은 감소하는 것으로 분석되었다. 하도 폭과 step 폭은 뚜렷한 상관관계가 있으며, 하도 폭의 증가에 따라 step 폭도 증가하는 것으로 분석되었다. 또한, step 파장은 하도 폭에 의하여 규모가 정해지고, step 높이는 step을 형성하는 암석의 크기에 의해 지배되기 때문에 step-pool의 종단면의 하상구조는 하도경사에 따라 변화하는 것으로 판단된다. Pool의 규모는 하도 폭, 입경 및 하도경사와 상관성이 큰 것을 확인하였다. 따라서 하천의 step-pool 구조 특성은 다양한 인자들의 영향을 받지만 대표적으로 입경, 하도 폭 및 하도경사로서 설명할 수 있는 것으로 분석되었다.

Structural and Electrical Features of Solution-Processed Li-doped ZnO Thin Film Transistor Post-Treated by Ambient Conditions

  • Kang, Tae-Sung;Koo, Jay-Hyun;Kim, Tae-Yoon;Hong, Jin-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2012
  • Transparent oxide semiconductors are increasingly becoming one of good candidates for high efficient channel materials of thin film transistors (TFTs) in large-area display industries. Compare to the conventional hydrogenated amorphous silicon channel layers, solution processed ZnO-TFTs can be simply fabricated at low temperature by just using a spin coating method without vacuum deposition, thus providing low manufacturing cost. Furthermore, solution based oxide TFT exhibits excellent transparency and enables to apply flexible devices. For this reason, this process has been attracting much attention as one fabrication method for oxide channel layer in thin-film transistors (TFTs). But, poor electrical characteristic of these solution based oxide materials still remains one of issuable problems due to oxygen vacancy formed by breaking weak chemical bonds during fabrication. These electrical properties are expected due to the generation of a large number of conducting carriers, resulting in huge electron scattering effect. Therefore, we study a novel technique to effectively improve the electron mobility by applying environmental annealing treatments with various gases to the solution based Li-doped ZnO TFTs. This technique was systematically designed to vary a different lithium ratio in order to confirm the electrical tendency of Li-doped ZnO TFTs. The observations of Scanning Electron Microscopy, Atomic Force Microscopy, and X-ray Photoelectron Spectroscopy were performed to investigate structural properties and elemental composition of our samples. In addition, I-V characteristics were carried out by using Keithley 4,200-Semiconductor Characterization System (4,200-SCS) with 4-probe system.

  • PDF

Electrical Properties of a-IGZO Thin Films for Transparent TFTs

  • Bang, J.H.;Song, P.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.99-99
    • /
    • 2010
  • Recently, amorphous transparent oxide semiconductors (TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). The TOS TFTs using a-IGZO channel layers exhibit a high electron mobility, a smooth surface, a uniform deposition at a large area, a high optical transparency, a low-temperature fabrication. In spite of many advantages of the sputtering process such as better step coverage, good uniformity over large area, small shadow effect and good adhesion, there are not enough researches about characteristics of a-IGZO thin films. In this study, therefore, we focused on the electrical properties of a-IGZO thin films as a channel layer of TFTs. TFTs with the a-IGZO channel layers and Y2O3 gate insulators were fabricated. Source and drain layers were deposited using ITO target. TFTs were deposited on unheated non-alkali glass substrates ($5cm{\times}5cm$) with a sintered ceramic IGZO disc (3 inch $\varnothing$, 5mm t), Y2O3 disc (3 inch $\varnothing$, 5mm t) and ITO disc (3 inch $\varnothing$, 5mm t) as a target by magnetron sputtering method. The O2 gas was used as the reactive gas. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of a-IGZO thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

High-Performance, Fully-Transparent and Top-Gated Oxide Thin-Film Transistor with High-k Gate Dielectric

  • Hwang, Yeong-Hyeon;Cho, Won-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.276-276
    • /
    • 2014
  • High-performance, fully-transparent, and top-gated oxide thin-film transistor (TFT) was successfully fabricated with Ta2O5 high-k gate dielectric on a glass substrate. Through a self-passivation with the gate dielectric and top electrode, the top-gated oxide TFT was not affected from H2O and O2 causing the electrical instability. Heat-treated InSnO (ITO) was used as the top and source/drain electrode with a low resistance and a transparent property in visible region. A InGaZnO (IGZO) thin-film was used as a active channel with a broad optical bandgap of 3.72 eV and transparent property. In addition, using a X-ray diffraction, amorphous phase of IGZO thin-film was observed until it was heat-treated at 500 oC. The fabricated device was demonstrated that an applied electric field efficiently controlled electron transfer in the IGZO active channel using the Ta2O5 gate dielectric. With the transparent ITO electrodes and IGZO active channel, the fabricated oxide TFT on a glass substrate showed optical transparency and high carrier mobility. These results expected that the top-gated oxide TFT with the high-k gate dielectric accelerates the realization of presence of fully-transparent electronics.

  • PDF

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

ECAP가공에 의한 초미세립 소재의 기계적 물성 (Mechanical Properties of Ultrafine Grained Materials via Equal-Channel Angular Pressing)

  • 고영건;김우겸;안정용;박경태;이종수;신동혁
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.105-111
    • /
    • 2006
  • A study was made to investigate the microstructure and the mechanical properties of low-carbon steel, Al-Mg alloy and Ti-6Al-4V alloy each representing bcc, fcc and hcp crystal structures, respectively fabricated by equal-channel angular(ECA) pressing. After a series of ECA pressings was performed, most grains were significantly refined below ${\mu}m$ in diameter with high mis-orientation of grain boundaries irrespective of different crystal structure used. Regarding the strain hardening capability, tensile tests of ultrafine grain (UFG) dual-phase (ferrite/martensite) steel which was different from UFG ferrite-pearlite steel were carried out at ambient temperature, and corresponding mechanical properties were discussed in relation to modified C-J analysis. Low-temperature and/or high strain-rate superplasticity of the UFG Al-Mg alloy and UFG Ti-6Al-4V alloy were also studied. Based on the analysis used in this study, it was concluded that UFG alloys exhibited the enhanced mechanical properties as compared to coarse-grained (CG) counterparts.