• Title/Summary/Keyword: Channel materials

Search Result 894, Processing Time 0.04 seconds

Modeling and Characteristics of $K^{+}$ Ion-exchanged Waveguide-type Optical Coupler ($K^{+}$ 이온교환 도파로형 광결합기의 모델링 및 특성)

  • 천석표;박태성;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.194-197
    • /
    • 1995
  • In this study, we performed a modeling for $K^{+}$ ion-exchanged diffused channel waveguide and waveguide-type optical coupler by WKB(Wentzel-Kramer-Brillouim) dispersion equation, field distribution equation of mode and coupled mode theory, and examined the optical-power-dividing of the optical coupler fabricated by using the modeling condition. The optical-power-dividing was observed at the waveguide-type optical coupler with 3[$\mu\textrm{m}$] line-width, 6[$\mu\textrm{m}$] space between channel waveguides, and 3[mm] interaction length.

  • PDF

Characterization of Pore Structures for Porous Sintered Reaction-Bonded Silicon Nitrides with Varied Pore-Former Content

  • Park, Young-Jo;Song, In-Hyuck;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.675-680
    • /
    • 2008
  • The effect of pore former content on both porosity and pore structure was investigated for porous sintered reaction-bonded silicon nitrides (SRBSNs). A spherical PMMA with $d_{50}=8{\mu}m$ was employed as a pore-former. Its amount ranged from 0 to 30 part. Porous SRBSNs were fabricated by post-sintering at various temperatures where the porosity was controlled at $12{\sim}52%$. The strong tendency of increasing porosity with PMMA content and decreasing porosity with sintering temperature was observed. Measured pore-channel diameter increased $(0.3{\rightarrow}1.1{\mu}m)$ with both PMMA content and sintering temperature.

A multi-radio sink node designed for wireless SHM applications

  • Yuan, Shenfang;Wang, Zilong;Qiu, Lei;Wang, Yang;Liu, Menglong
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.261-282
    • /
    • 2013
  • Structural health monitoring (SHM) is an application area of Wireless Sensor Networks (WSNs) which usually needs high data communication rate to transfer a large amount of monitoring data. Traditional sink node can only process data from one communication channel at the same time because of the single radio chip structure. The sink node constitutes a bottleneck for constructing a high data rate SHM application giving rise to a long data transfer time. Multi-channel communication has been proved to be an efficient method to improve the data throughput by enabling parallel transmissions among different frequency channels. This paper proposes an 8-radio integrated sink node design method based on Field Programmable Gate Array (FPGA) and the time synchronization mechanism for the multi-channel network based on the proposed sink node. Three experiments have been performed to evaluate the data transfer ability of the developed multi-radio sink node and the performance of the time synchronization mechanism. A high data throughput of 1020Kbps of the developed sink node has been proved by experiments using IEEE.805.15.4.

Ferroelectric-gate Field Effect Transistor Based Nonvolatile Memory Devices Using Silicon Nanowire Conducting Channel

  • Van, Ngoc Huynh;Lee, Jae-Hyun;Sohn, Jung-Inn;Cha, Seung-Nam;Hwang, Dong-Mok;Kim, Jong-Min;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.427-427
    • /
    • 2012
  • Ferroelectric-gate field effect transistor based memory using a nanowire as a conducting channel offers exceptional advantages over conventional memory devices, like small cell size, low-voltage operation, low power consumption, fast programming/erase speed and non-volatility. We successfully fabricated ferroelectric nonvolatile memory devices using both n-type and p-type Si nanowires coated with organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] via a low temperature fabrication process. The devices performance was carefully characterized in terms of their electrical transport, retention time and endurance test. Our p-type Si NW ferroelectric memory devices exhibit excellent memory characteristics with a large modulation in channel conductance between ON and OFF states exceeding $10^5$; long retention time of over $5{\times}10^4$ sec and high endurance of over 105 programming cycles while maintaining ON/OFF ratio higher $10^3$. This result offers a viable way to fabricate a high performance high-density nonvolatile memory device using a low temperature fabrication processing technique, which makes it suitable for flexible electronics.

  • PDF

Microstructural Evolution of Cu-15 wt%Ag Composites Processed by Equal Channel Angular Pressing (등통로각압축공정을 이용하여 제조된 Cu-15 wt%Ag 복합재의 미세구조)

  • Lee, In Ho;Hong, Sun Ig;Lee, Kap Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.931-937
    • /
    • 2012
  • The microstructure of Cu-15 wt%Ag composites fabricated by equal channel angular pressing (ECAP) with intermediate heat treatment at $320^{\circ}C$ was investigated by transmission electron microscopy (TEM) observations. Ag precipitates with a thickness of 20-40 nm were observed in the eutectic region of the Cu-15 wt%Ag composite solution treated at $700^{\circ}C$ before ECAP. The Cu matrix and Ag precipitates had a cube on cube orientation relationship. ECAPed composites exhibited ultrafine-grained microstructures with the shape and distribution dependent on the processing routes. For route A in which the sample was pressed without rotation between each pass, the Cu and Ag grains were elongated along the shear direction and many micro-twins were observed in elongated Cu grains as well as in Ag filaments. The steps were observed on coherent twin boundaries in Cu grains. For route Bc in which the sample was rotated by 90 degrees after each pass, a subgrain structure with misorientation of 2-4 degree by fragmentation of the large Cu grains were observed. For route C in which the sample was rotated by 180 degrees after each pass, the microstructure was similar to that of the route A sample. However, the thickness of the elongated grains along the shear direction was wider than that of the route A sample and the twin density was lower than the route A sample. It was found that more microtwins were formed in ECAPed Cu-15 wt%Ag than in the drawn sample. Grain boundaries were observed in relatively thick and long Ag filaments in Cu-15 wt%Ag ECAPed by route C, indicating the multi-crystalline nature of Ag filaments.

Performance Optimization of LDMOS Transistor with Dual Gate Oxide for Mixed-Signal Applications

  • Baek, Ki-Ju;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.254-259
    • /
    • 2015
  • This paper reports the optimized mixed-signal performance of a high-voltage (HV) laterally double-diffused metaloxide-semiconductor (LDMOS) field-effect transistor (FET) with a dual gate oxide (DGOX). The fabricated device is based on the split-gate FET concept. In addition, the gate oxide on the source-side channel is thicker than that on the drain-side channel. The experiment results showed that the electrical characteristics are strongly dependent on the source-side channel length with a thick gate oxide. The digital and analog performances according to the source-side channel length of the DGOX LDMOS device were examined for circuit applications. The HV DGOX device with various source-side channel lengths showed reduced by maximum 37% on-resistance (RON) and 50% drain conductance (gds). Therefore, the optimized mixed-signal performance of the HV DGOX device can be obtained when the source-side channel length with a thick gate oxide is shorter than half of the channel length.

Multi-Channel Behavior for Fashion Product Purchases and the Difference of Perceived Risk by Channel Type -The Case of College Men and Women- (패션 상품 구매 과정에서의 다중 경로 활용과 경로별 위험 지각 차이 -대학생 성별에 따른 비교-)

  • Chung, Ihn Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.2
    • /
    • pp.277-292
    • /
    • 2014
  • This study investigated consumers' multi-channel behavior for fashion product purchases and compared perceived risks by channel type. A survey involving male and female college students was conducted in the Daegu and Gyungbuk area in December 2013. A total of 400 responses were analyzed using descriptive statistics, chi-square analysis, independent sample t-test, paired t-test, factor analysis, and reliability analysis. An internet shopping mall was the most frequently chosen retailer type for fashion product purchases and information searches. In addition, respondents also preferred independent branded stores, department stores, and non-branded stores. The number of retailer types for clothing item purchases ranged from 1 to 6 and the average was 3.06. The number of retailer types was significantly higher in women groups according to gender variables. Perceived risk had the highest evaluation score for internet shopping malls. Department stores were recognized as a reliable retailer type. The construct of perceived risk was shown as similar in off-line stores such as department stores, independent branded stores, and non-branded stores. Instead, the construct was differentiated from the case of internet shopping malls. Some insightful suggestions were suggested for future research and industrial marketing plans based on the results.

Channel Capacity Maximization in a Distorted 2×2 LOS MIMO Link

  • Ko, In-Chang;Park, Hyung-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.72-77
    • /
    • 2018
  • This paper presents a novel channel capacity maximization method for a distorted $2{\times}2$ line-of-sight (LOS) multiple-input multiple-output (MIMO) link. A LOS MIMO link may be distorted by the influence of environmental factors such that the channel capacity of the LOS MIMO link may be degraded. By using the proposed method, the channel capacity of a distorted $2{\times}2$ LOS MIMO link can be the same as that of the ideal $2{\times}2$ LOS MIMO link. The proposed method employs an additional receiver antenna to maximize the channel capacity. In contrast to a $3{\times}2$ LOS MIMO link, a receiver circuit for a third receiving antenna is not necessary. Hence, the receiver for the proposed method is much simpler than that for a $3{\times}2$ LOS MIMO link. We determine the optimal position of the additional receiver antenna analytically. Simulation results show that the channel capacity can approach the ideal using the proposed method.

Device Optimization of N-Channel MOSFETs with Lateral Asymmetric Channel Doping Profiles

  • Baek, Ki-Ju;Kim, Jun-Kyu;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a $0.35\;{\mu}m$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and $1.5\;{\mu}m$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($i_{SUB}$), drain to source leakage current ($i_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.