• Title/Summary/Keyword: Channel form

Search Result 817, Processing Time 0.04 seconds

Research on Improving in Mass Transfer Characteristics by Cathode Wave-Form Channel (Wave 형상 채널을 통한 연료전지 Cathode에서의 물질전달 특성 향상에 관한 연구)

  • Lee, Kyu-Ho;Nam, Ki-Hoon;Byun, Jae-Ki;Choi, Nam-Hyun;Choi, Young-Don
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2011
  • PEMFC (polymer electrolyte membrane fuel cell) is device that generates electricity from hydrogen. It is one of the subjects related to renewable energy and various research has been conducted on the PEMFC. PEMFC has low operating temperature and high efficiency among fuel cells, and is given attention as means for automobile and domestic use. Analysis of flow field pattern in supplying hydrogen and oxygen is part of the research to increase PEMFC efficiency. In this study, separation plate currently used in PEMFC is transformed to wave shape and mass transfer characteristics in the channel is examined through numerical and experimental analysis. Wave shape separation plate yielded 18% increase of efficiency compared to separation plate used in normal channel. And improvements in mass transfer characteristics were verified.

Multiuser Channel Estimation Using Robust Recursive Filters for CDMA System

  • Kim, Jang-Sub;Shin, Ho-Jin;Shin, Dong-Ryeol
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • In this paper, we present a novel blind adaptive multiuser detector structure and three robust recursive filters to improve the performance in CDMA environments: Sigma point kalman filter (SPKF), particle filter (PF), and Gaussian mixture sigma point particle filter (GMSPPF). Our proposed robust recursive filters have superior performance over a conventional extended Kalman filter (EKF). The proposed multiuser detector algorithms initially use Kalman prediction form to estimated channel parameters, and unknown data symbol be predicted. Second, based on this predicted data symbol, the robust recursive filters (e.g., GMSPPF) is a refined estimation of joint multipaths and time delays. With these estimated multipaths and time delays, data symbol detection is carried out (Kalman correction form). Computer simulations show that the proposed algorithms outperform the conventional blind multiuser detector with the EKF. Also we can see it provides a more viable means for tracking time-varying amplitudes and time delays in CDMA communication systems, compared to that of the EKF for near-far ratio of 20 dB. For this reason, it is believed that the proposed channel estimators can replace well-known filter such as the EKF.

Generalized Robust Multichannel Frequency-Domain LMS Algorithms for Blind Channel Identification

  • Chung, Ik-Joo;Clements, Mark A.
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.130-133
    • /
    • 2012
  • Recently, several noise-robust adaptive multichannel LMS algorithms have been proposed based on the spectral flatness of the estimated channel coefficients in the presence of additive noise. In this work, we propose a general form for the algorithms that integrates the existing algorithms into a common framework. Computer simulation results are presented and demonstrate that a new proposed algorithm gives better performance compared to existing algorithms in noisy environments.

Performance and comparison resource management policies with channel De-Allocation in GPRS Network (GPRS에서 채널 de-allocation 이용시 자원관리 정책 평가 비교)

  • 송윤경;박동선
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.61-64
    • /
    • 2003
  • GPRS is designed for transmitting packet data and supposed to take its radio resource form the pool of channels unused by GSM voice services. In this paper, The GPRS and GSM circuit switched services share the same radio resource. Whenever a channel is not used by circuit switched services, it may be utilized by GPRS. In this paper, the main aim is performance and comparison resource management policies with channel de-allocation in GPRS network. Three resource management policies is voice priority, R-reservation, dynamic reservation.

  • PDF

Geometrical Uniformity For Space-Time Codes (시공간 부호의 기하학적 균일성)

  • 정영석;이재홍
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.89-92
    • /
    • 2003
  • A geometrically uniform code in AWGN channel has strong symmetry properties such as a) the distance profiles form codewords On C to all other codewords are all the same, and b) all Voronoi regions of codewords in C have the same shape. Such properties make the word error probability of geometrically uniform codes be transparent to the transmitted codeword. In this paper, we extend the geometrically uniform codes in AWGN channel to the geometrical uniform codes in fading channel with multiple transmit antennas.

  • PDF

A neural network algorithm for the channel assignment in cellular mobile communication (이동통신에서의 채널할당 신경망 알고리즘)

  • 최광호;이강장;김준한;전옥준;조용범
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.5
    • /
    • pp.59-68
    • /
    • 1998
  • This paper proposes a neural network algorithm for a channel assignment in cellular mobile communications. The proposed algorithm is developed base on hopfield neural network in order to minimize the number of channel without a confliction between cells. To compare the performance of the proposed algorithm, we used seven benchmark problems selected from kunz's and funabiki's papers. Experimental results show that the convergence times are reduced form 27% to 66% compared with Kunz's and funabiki's algorithm and vonvergence rates are improved to 100%.

  • PDF

Channel Selection for Spectrum Sharing in Wireless Networks

  • Park, Jae Cheol;Kang, Kyu-Min;Park, Seungkeun
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.952-961
    • /
    • 2016
  • In this paper, we study a spectrum sharing network (SSN) where a spectrum sharing device (SSD) coexists with multiple wireless communication systems (WCSs) in the same channel. The SSD can operate with either a duty cycle (DC) channel access mechanism or a listen-before-talk (LBT) channel access mechanism, whereas WCSs operate with an LBT mechanism. An opportunistic channel selection scheme for the SSD in the SSN is first proposed to minimize the outage probability. The optimal data transmission time for the DC-based SSD is derived to further improve the outage probability. We also derive the exact and closed-form outage probability of the proposed channel selection in the SSN by assuming that the number of WCSs operating in each channel is uniformly distributed. The simulation results show that the proposed channel selection scheme outperforms other channel selection schemes. It was also observed that a DC-based SSD with an optimal data transmission time provides a better outage performance than an LBT-based SSD. As the number of available channels increases, the channel selection scheme plays an important role in minimizing the outage probability of the SSNs.

On Power Calculation for First and Second Strong Channel Users in M-user NOMA System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has been recognized as a significant technology in the fifth generation (5G) and beyond mobile communication, which encompasses the advanced smart convergence of the artificial intelligence (AI) and the internet of things (IoT). In NOMA, since the channel resources are shared by many users, it is essential to establish the user fairness. Such fairness is achieved by the power allocation among the users, and in turn, the less power is allocated to the stronger channel users. Especially, the first and second strong channel users have to share the extremely small amount of power. In this paper, we consider the power optimization for the two users with the small power. First, the closed-form expression for the power allocation is derived and then the results are validated by the numerical results. Furthermore, with the derived analytical expression, for the various channel environments, the optimal power allocation is investigated and the impact of the channel gain difference on the power allocation is analyzed.

Robust Approach for Channel Estimation in Power Line Communication

  • Huang, Jiyan;Wang, Peng;Wan, Qun
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • One of the major problems for accurate channel estimation in power line communication systems is impulsive noise. Traditional channel estimation algorithms are based on the assumption of Gaussian noise, or the need to locate the positions of impulsive noise. The algorithms may lose optimality when impulsive noise exists in the channel, or if the location estimation of impulsive noise is inaccurate. In the present paper, an effective channel estimation algorithm based on a robust cost function is proposed to mitigate impulsive noise. The proposed method can provide a closed-form solution, and the application of robust estimation theory enables the proposed method to be free from localization of impulsive noise and thus can guarantee that the proposed method has better performance. Simulations verified the proposed algorithm.

Performance Analysis of Distributed Antenna Systems with Antenna Selection over MIMO Rayleigh Fading Channel

  • Yu, Xiangbin;Tan, Wenting;Wang, Ying;Liu, Xiaoshuai;Rui, Yun;Chen, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3016-3033
    • /
    • 2014
  • The downlink performance of distributed antenna systems (DAS) with antennas selection is investigated in Rayleigh fading multicell environment, and the corresponding system capacity and bit error rate (BER) analysis are presented. Based on the moment generating function, the probability density function (PDF) and cumulative distribution function (CDF) of the effective signal to interference plus noise ratio (SINR) of the system are first derived, respectively. Then, with the available CDF and PDF, the accurate closed-form expressions of average channel capacity and average BER are further derived for exact performance evaluation. To simplify the expression, a simple closed-form approximate expression of average channel capacity is obtained by means of Taylor series expansion, with the performance results close to the accurate expression. Besides, the system outage capacity is analyzed, and an accurate closed-form expression of outage capacity probability is derived. These theoretical expressions can provide good performance evaluation for DAS downlink. It can be shown by simulation that the theoretical analysis and simulation are consistent, and DAS with antenna selection outperforms that with conventional blanket transmission. Moreover, the system performance can be effectively improved as the number of receive antennas increases.