• Title/Summary/Keyword: Channel equalization techniques

Search Result 37, Processing Time 0.024 seconds

A study on threshold detection algorithm for adaptive transmission in underwater acoustic communication (수중 음향 통신에서 적응형 전송을 위한 임계값 검출 알고리즘)

  • Jung, Ji-Won;Kim, In-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.585-591
    • /
    • 2020
  • The adaptive transmission techniques are efficient method for underwater acoustic communication to improve the system efficiency by varying transmission parameters according to channel conditions. In this paper, we construct four transmission modes with different data rates using the convolutional codes, which is freely set to size of information bits. On the receiver side, one critical component of adaptive system is to find which mode has best performance. In this paper, we proposed threshold detection algorithm to decide appropriate mode and applied turbo equalization method based on BCJR decoder in order to improve performance. We analyzed the performance of four modes based on threshold detection algorithm through the lake experiment.

Blind Direct Decision Feedback Equalization using Prediction Error Filters (예측 오류 필터를 이용한 블라인드 결정 궤환 등화기 추정 기법)

  • 유화선;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.279-285
    • /
    • 2003
  • In this paper we propose a blind decision feedback equalizer (DFE) that is characterized by the fact that it does not require channel estimation. Because the output of the optimized multistep prediction error filter (PEF) can be represented as a product of the channel partial impulse response and the transmitted sequence, a backward multistep PEF can be used as the blind DFE feedforward filter (FFF). The corresponding feedback filter (FBF) is obtained from the symbol -rate partial channel impulse response. The proposed algorithm has several advantages over existing blind channel estimation techniques, including stable performance without the necessity of exact channel order estimation.

A Study on the Minimum Error Entropy - related Criteria for Blind Equalization (블라인드 등화를 위한 최소 에러 엔트로피 성능기준들에 관한 연구)

  • Kim, Namyong;Kwon, Kihyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.87-95
    • /
    • 2009
  • As information theoretic learning techniques, error entropy minimization criterion (MEE) and maximum cross correntropy criterion (MCC) have been studied in depth for supervised learning. MEE criterion leads to maximization of information potential and MCC criterion leads to maximization of cross correlation between output and input random processes. The weighted combination scheme of these two criteria, namely, minimization of Error Entropy with Fiducial points (MEEF) has been introduced and developed by many researchers. As an approach to unsupervised, blind channel equalization, we investigate the possibility of applying constant modulus error (CME) to MEE criterion and some problems of the method. Also we study on the application of CME to MEEF for blind equalization and find out that MEE-CME loses the information of the constant modulus. This leads MEE-CME and MEEF-CME not to converge or to converge slower than other algorithms dependent on the constant modulus.

  • PDF

Blind Equalizer Algorithms using Random Symbols and Decision Feedback (랜덤 심볼열과 결정 궤환을 사용한 자력 등화 알고리듬)

  • Kim, Nam-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.343-347
    • /
    • 2012
  • Non-linear equalization techniques using decision feedback structure are highly demanded for cancellation of intersymbol interferences occurred in severe channel environments. In this paper decision feedback structure is applied to the linear blind equalizer algorithm that is based on information theoretic learning and a randomly generated symbol set. At the decision feedback equalizer (DFE) the random symbols are generated to have the same probability density function (PDF) as that of the transmitted symbols. By minimizing difference between the PDF of blind DFE output and that of randomly generated symbols, the proposed DFE algorithm produces equalized output signal. From the simulation results, the proposed method has shown enhanced convergence and error performance compared to its linear counterpart.

Optimum Turbo Equalization Method based on Layered Space Time Codes in Underwater Communications (MIMO 수중통신에서 최적의 터보 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1042-1050
    • /
    • 2014
  • The performance of underwater acoustic(UWA) communication system is sensitive to the Inter-Symbol Interference(ISI) due to delay spread develop of multipath signal propagation. And due to limited frequency using acoustic wave, UWA is a low transmission rate. Thus, it is necessary technique of Space-time code, equalizer and channel code to improve transmission speed and eliminate ISI. In this paper, UWA communication system were analyzed by simulation using these techniques. In the result of simulation, the proposed Turbo Equalization method based on layered Space Time Codes has improved performance compared to conventional UWA communication.

Optimizing of BCJR Equalization with BCJR Decoder in the Underwater Communication (수중통신에서 최적의 BCJR 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won;Park, Tae-Doo;Lee, Dong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2094-2100
    • /
    • 2014
  • The performance of underwater acoustic communication system is sensitive to the inter-symbol interference due to delay spread develop of multipath signal propagation. Thus, it is necessary technique of equalizer and channel code to eliminate inter-symbol interference. In this paper, underwater acoustic communication system were analyzed by experiment using these techniques on the Kyeong-chun lake, Munkyeong City. Based on the results of experiment, we confirmed that the performance of the proposed iterative BCJR equalization method is improved by increasing the number of iterations.

Performance Analysis of SOVA by Robust Equalization, Techniques in Nongaussian Noise Channel (비가우시안 잡음 채널에서 Robust 등화기법을 이용한 터보 부호의 SOVA 성능분석)

  • Soh, Surng-Ryurl;Lee, Chang-Bum;Kim, Yung-Kwon;Chung, Boo-Young
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.257-265
    • /
    • 2000
  • Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics in each decoding step, and uses the information to the next decoding step. Viterbi decoder, which is for a convolutional code, runs continuous mode, while Turbo Code decoder runs by block unit. There are algorithms used in a decoder : which are MAP(maximum a posteriori) algorithm requiring very complicated calculation and SOVA(soft output Viterbi algorithm) using Viterbi algorithm suggested by Hagenauer, and it is known that the decoding performance of MAP is better. The result of this make experimentation shows that the performance of SOVA, which has half complex algorithm compare to MAP, is almost same as the performance of MAP when the SOVA decoding performance is supplemented with Robust equalization techniques.

  • PDF

A Study on the Binary-Coded Physical-Layer Network Coding with High-Order Modulation Techniques (고차원 변조방식을 적용한 이진 부호화된 물리계층 네트워크 코딩에 관한 연구)

  • Lim, Hyeonwoo;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2131-2139
    • /
    • 2014
  • In this paper, a binary-coded physical-layer network coding (PNC) is considered when high-order modulation techniques are used at source nodes in wireless communication environments. In the conventional PNC schemes, tight power control and phase compensation are required at a relay node. However, they may not be feasible in practical wireless communication environments. Thus, we do not assume the pre-equalization in this paper, and we only utilize the channel state information at receiver (CSIR). We propose a signal detection method for the binary-coded PNC with high-order modulation, such as QPSK and 16QAM, at the source nodes, while the conventional scheme only consider the BPSK at source nodes. We also analyze the bit-error performance of the proposed technique in both uncoded and coded cases.

FPGA Implementation of SC-FDE Timing Synchronization Algorithm

  • Ji, Suyuan;Chen, Chao;Zhang, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.890-903
    • /
    • 2019
  • The single carrier frequency domain equalization (SC-FDE) technology is an important part of the broadband wireless access communication system, which can effectively combat the frequency selective fading in the wireless channel. In SC-FDE communication system, the accuracy of timing synchronization directly affects the performance of the SC-FDE system. In this paper, on the basis of Schmidl timing synchronization algorithm a timing synchronization algorithm suitable for FPGA (field programmable gate array) implementation is proposed. In the FPGA implementation of the timing synchronization algorithm, the sliding window accumulation, quantization processing and amplitude reduction techniques are adopted to reduce the complexity in the implementation of FPGA. The simulation results show that the algorithm can effectively realize the timing synchronization function under the condition of reducing computational complexity and hardware overhead.

Neural Equalization Techniques in Partial Erasure Model of Nonlinear Magnetic Recording Channel (부분 삭제 모델로 나타난 비선형 자기기록 채널에서의 신경망 등화기법)

  • Choi, Soo-Yong;Ong, Sung-Hwan;You, Cheol-Woo;Hong, Dae-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.103-108
    • /
    • 1998
  • The increase in the capacity of the digital magnetic recording systems inevitably causes severe intersymbol interference (ISI) and nonlinear distortions in the digital magnetic recording channel. In this paper, to cope with severe ISI and nonlinear distortions a neural decision feedback equalizer (NDFE) is applied to the digital magnetic recording channel - partial erasure channel model. In the performance comparison of bit error probability (or bit error ratio : BER) between the NDFE and the conventional decision feedback equalizer (DFE) via computer simulations. It has been found that as nonlinear distortions increase the NDFE has more SNR (SIgnal-to-Noise Ratio) advantage over the conventional DFE. In addition, in spite of the same recording density, as nonlinear distortions are increased, NDFE has the better performance of BER and the greater stability over conventional DFE.

  • PDF