• 제목/요약/키워드: Channel Switching

Search Result 366, Processing Time 0.025 seconds

Performance Investigation of Insulated Shallow Extension Silicon On Nothing (ISE-SON) MOSFET for Low Volatge Digital Applications

  • Kumari, Vandana;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.622-634
    • /
    • 2013
  • The circuit level implementation of nanoscale Insulated Shallow Extension Silicon On Nothing (ISE-SON) MOSFET has been investigated and compared with the other conventional devices i.e. Insulated Shallow Extension (ISE) and Silicon On Nothing (SON) using the ATLAS 3D device simulator. It can be observed that ISE-SON based inverter shows better performance in terms of Voltage Transfer Characteristics, noise margin, switching current, inverter gain and propagation delay. The reliability issues of the various devices in terms of supply voltage, temperature and channel length variation has also been studied in the present work. Logic circuits (such as NAND and NOR gate) and ring oscillator are also implemented using different architectures to illustrate the capabilities of ISE-SON architecture for high speed logic circuits as compared to other devices. Results also illustrates that ISE-SON is much more temperature resistant than SON and ISE MOSFET. Hence, ISE-SON enables more aggressive device scaling for low-voltage applications.

Development of Digital/Analog Hybrid Redundancy System for Audio Mixer (오디오믹서용 디지털-아날로그 하이브리드 이중화 시스템 개발)

  • KIM, Kwan-Woong;CHO, JUPHIL
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.63-68
    • /
    • 2016
  • Audio mixer is an electronic device which performs a mixing of multiple audio signals. Digital mixer having various functions and scalability is spreaded thanks to advanced DSP and IT technology. However, digital mixer is more vulnerable to stability comparing to conventional analog mixer in the digital error or software error sense because its control is executed by SW. To solve this problem, in this paper, we propose a multi-channel digital analog hybrid mixer scheme, digital mixer error detection mechanism and malfunctioning switching technique. Also we develop the audio mixer having digital-analog hybrid structure. By simulation, we can sense the error of digital mixer except power loss in a 120ms, change into analog mixer mode automatically and provide continuous broadcasting function without mixer function loss.

A Study on the Acousto-Optical Wavelength Tunable Filters Utilizing Tapered Directional Coupler SAW Guides (Tapered 방향성 가중 결합 음향파 도파로 구조를 이용한 음향광학형 파장가변 광 필터에 관한 연구)

  • Jeong, Gi-Jo;Kim, Jeong-Hui;Jeong, Hong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • Acousto-optical wavelength tunable optical filters in LiNbO$_3$ have been demonstrated using taperd directional weighted coupling acoustic waveguides and Ti double diffusion technique. Conversion efficiency in excess of 61%, 86% and sidelobe intensity of -14.29㏈, -14.99㏈ were measured at a wavelength of 1551.1nm RF frequency of 173.58MHz and RF power of 35㎽ for both TE and TM input polarizations, respectivelv. A spectral width of ~l.8nm and linear tuning late of 8.6nm/MHz were demonstrated. A 2.82$mutextrm{s}$ switching time has been measured. With two channels with 2.5nmseparation, channel cross-talk was lower than -l4㏈ for single wavelength filtering due to sidelobe.

Channel Capacity of Mobile Communication System Using Switching Repeater (스위칭 중계기를 사용한 이동통신 시스템의 채널용량)

  • Kim, Jang-Wook;Choi, Wan;Oh, Chang-Heon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.68-73
    • /
    • 2001
  • 이동통신 시스템에서 지하 주차장, 지하상가, 터널, 빌딩내부등과 같이 기지국에 의한 신호의 커버리지가 충분하지 못한 지역들이 발생하게 된다. 이러한 영역의 경제적인 해결 방안으로 중계기가 널리 사용된다. 그러나, 중계기의 수가 증가할수록 역방향 링크의 기지국으로 유입되는 잡음 전력이 중계기의 숫자에 비례하여 증가하기 때문에 채널 용량이 감소하게 된다. 수십, 수백개의 중계기가 하나의 기지국에 연결되는 상황에서 이러한 채널 용량의 감소는 더 이상 무시할 수 없다. 본 논문에서는 커버리지 내에 통화중인 사용자가 없을 때에 자동적으로 동작하지 않는 스위칭 중계기를 제안하였다. 스위칭 중계기를 사용하면 중계기의 커버리지 내에 통화중인 사용자가 없을 때 불필요한 잡음 레벨을 줄일 수 있다. 스위칭 중계기를 사용한 이동통신 시스템의 역방향 링크 채널 용량을 수학적으로 분석하여 스위칭 중계기를 사용하지 않는 상황과 비교하였다. 그 결과 스위칭 중계기를 사용할 때 충분히 채널용량이 개선되었음을 알 수 있었다.

  • PDF

A Transmission Technique of Multichannel Receiver Data for the Phased-Array Radar (위상 배열레이더의 다채널 수신 데이터 전송 기법)

  • Jeong, Myung-Deuk;Kim, Han-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1188-1195
    • /
    • 2012
  • The trend for the development of radar is the active phased-array radar system. The trade-off between the processing speed and the number of the signal process board for the real time signal processing has to be optimized particularly in multichannel radar system. This paper introduces a transmission technique in order to transmit a large amount of received data from an Antenna Part to Signal Process Part. As a result, the number of the S/L board(COTS board) is reduced to one half, and the margin of the data transmission rate is about 2 times higher than the original method.

The Design and Implementation of TDD-OFDMA Feedback Signal Cancellation(FSC) Digital RF Repeater (TDD-OFDMA 방식의 귀환 신호 제거 디지털 RF 중계기 설계 및 구현)

  • Ryoo Gyoo-Tae;Kim Dae-Yen;Park Se-Jun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.57-61
    • /
    • 2006
  • As high speed internet users are tremendously increasing, three are keenly in need of development of high speed portable internet technology which can provide high quality wireless internet service cheaply even in the mobile. Unlike the FDD-CDMA, TDD-OFDMA has relatively poor wave environment with inducing interference, fading and delay because it agrees to multi-carrier modulation method and time-division radio telecommunication system. To solve this problem, it is necessary to develop repeater operating by digital signal processing method which have more strict wireless channel control and wave signal processing technology over TDD telecommunication equipments. This thesis is dealing with design and implementation of Digital RF Repeater which implemented 'Synchronization Acquisition Unit', 'TDD signal switching Unit', 'Feedback Signal Cancellation Unit'. Over this argument, we will develop digital RF repeater with more cheap, more adaptive in wave environment like oscillation control, adaptive wave monitoring and output increasing and having control function as a result it will be helpful for success in high speed portable internet service business.

  • PDF

Fabrication of Organic Thin Film Transistor(OTFT) for Flexible Display by using Microcontact Printing Process (미세접촉프린팅공정을 이용한 플렉시블 디스플레이 유기박막구동소자 제작)

  • Kim K.Y.;Jo Jeong-Dai;Kim D.S.;Lee J.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.595-596
    • /
    • 2006
  • The flexible organic thin film transistor (OTFT) array to use as a switching device for an organic light emitting diode (OLED) was designed and fabricated in the microcontact printing and low-temperature processes. The gate, source, and drain electrode patterns of OTFT were fabricated by microcontact printing which is high-resolution lithography technology using polydimethylsiloxane(PDMS) stamp. The OTFT array with dielectric layer and organic active semiconductor layers formed at room temperature or at a temperature tower than $40^{\circ}C$. The microcontact printing process using SAM(self-assembled monolayer) and PDMS stamp made it possible to fabricate OTFT arrays with channel lengths down to even nano size, and reduced the procedure by 10 steps compared with photolithography. Since the process was done in low temperature, there was no pattern transformation and bending problem appeared. It was possible to increase close packing of molecules by SAM, to improve electric field mobility, to decrease contact resistance, and to reduce threshold voltage by using a big dielecric.

  • PDF

Capacity Bounds on the Ergodic Capacity of Distributed MIMO Systems over K Fading Channels

  • Li, XingWang;Wang, Junfeng;Li, Lihua;Cavalcante, Charles C.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2992-3009
    • /
    • 2016
  • The performance of D-MIMO systems is not only affected by multipath fading but also from shadowing fading, as well as path loss. In this paper, we investigate the ergodic capacity of D-MIMO systems operating in non-correlated K fading (Rayleigh/Gamma) channels. With the aid of majorization and Minkowski theory, we derive analytical closed-form expressions of the upper and lower bounds on the ergodic capacity for D-MIMO systems over non-correlated K fading channels, which are quite general and applicable for arbitrary signal-to-noise ratio (SNR) and the number of transceiver antennas. To intuitively reveal the impacts of system and fading parameters on the ergodic capacity, we deduce asymptotic approximations in the high and low SNR regimes. Finally, we pursue the massive MIMO systems analysis for the lower bound and derive closed-form expressions when the number of antennas at BS grows large, and when the number of antennas at transceivers becomes large with a fixed and finite ratio. It is demonstrated that the proposed expressions on the ergodic capacity accurately match with the theoretical analysis.

Giga-Hertz-Level Electromagnetic Field Analysis for Equivalent Inductance Modeling of High-Performance SoC and SiP Designs

  • Yao Jason J.;Chang Keh-Jeng;Chuang Wei-Che;Wang, Jimmy S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.255-261
    • /
    • 2005
  • With the advent of sub-90nm technologies, the system-on-chip (SoC) and system-in-package (SiP) are becoming the trend in delivering low-cost, low-power, and small-form-factor consumer electronic systems running at multiple GHz. The shortened transistor channel length reduces the transistor switching cycles to the range of several picoseconds, yet the time-of-flights of the critical on-chip and off-chip interconnects are in the range of 10 picoseconds for 1.5mm-long wires and 100 picoseconds for 15mm-long wires. Designers realize the bottleneck today often lies at chip-to-chip interconnects and the industry needs a good model to compute the inductance in these parts of circuits. In this paper we propose a new method for extracting accurate equivalent inductance circuit models for SPICE-level circuit simulations of system-on-chip (SoC) and system-in-package (SiP) designs. In our method, geometrical meshes are created and numerical methods are used to find the solutions for the electromagnetic fields over the fine meshes. In this way, multiple-GHz SoC and SiP designers can use accurate inductance modeling and interconnect optimization to achieve high yields.

Thermoelectric Seebeck and Peltier effects of single walled carbon nanotube quantum dot nanodevice

  • El-Demsisy, H.A.;Asham, M.D.;Louis, D.S.;Phillips, A.H.
    • Carbon letters
    • /
    • v.21
    • /
    • pp.8-15
    • /
    • 2017
  • The thermoelectric Seebeck and Peltier effects of a single walled carbon nanotube (SWCNT) quantum dot nanodevice are investigated, taking into consideration a certain value of applied tensile strain and induced ac-field with frequency in the terahertz (THz) range. This device is modeled as a SWCNT quantum dot connected to metallic leads. These two metallic leads operate as a source and a drain. In this three-terminal device, the conducting substance is the gate electrode. Another metallic gate is used to govern the electrostatics and the switching of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/metal contact are controlled by the back gate. Results show that both the Seebeck and Peltier coefficients have random oscillation as a function of gate voltage in the Coulomb blockade regime for all types of SWCNT quantum dots. Also, the values of both the Seebeck and Peltier coefficients are enhanced, mainly due to the induced tensile strain. Results show that the three types of SWCNT quantum dot are good thermoelectric nanodevices for energy harvesting (Seebeck effect) and good coolers for nanoelectronic devices (Peltier effect).