• Title/Summary/Keyword: Channel Section

Search Result 563, Processing Time 0.026 seconds

A Design of Multi-Channel Biotelemetry for ECG Encoding and Transmission Over the Public Telephone Line (공중 전화회선용 다중 채널 ECG데이터 원격 측정시스템 설계)

  • Gye, Sin-Ung;Jang, Won-Seok;Hong, Seung-Hong
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.21-34
    • /
    • 1986
  • In this paper, we described the ECG telemetry system via the Public Telephone Line. The system consist of a signal acquisition and measurement section, a signal processing section, and a signal transmission section. It used 8 bits microprocessor. The transmission section is composed of 3 ch. analog modulators and 1 ct. digital modem. Especially, using the digital modem, signal is transmitted with about 50n data reduction ratio by the TP (Turning Point) algorithm. The acoustic coupler or inductive coil for linking the public telephone line are used. The speed of the digital modem is 300 baud rate. The MCBS (Multi Channel Biotelemetry System) is tested and evaluated through the experiment.

  • PDF

Depressurized Circulating Water Channel Design Using CFD (수치 해석을 이용한 감압 회류 수조 설계)

  • 부경태;조희상;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.22-29
    • /
    • 2003
  • New high-speed depressurized circulating water channel was designed by using the CFD code. Flow in the channel has free surface and pressure in the test section can be depressed. In this study, Flow separation and bubble occurrence were considered in designing the contraction nozzle shape for better flow uniformity Tn the test section. To supplement velocity defect due to the free surface, nozzle injection system more effective in high-speed flow was installed instead of drum system. Necessary power and injection techniques were proposed. And guide vane arrangement was analyzed to reduce the flow resistance and keep quiet free surface from ´surging´. Wave absorber was devised to reduce the wave resistance and to prevent the entrainment of air to the diffuser.

Investigation of the Hydraulic Stability of Agricultural Drainage Channels Installed Water Purification Materials by using Flow-3D (Flow-3D를 활용한 수질정화체가 설치된 농업용 배수로의 안정성 조사)

  • Kim, Sun-Joo;Park, Ki-Chun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.3-9
    • /
    • 2007
  • In this study, the effect of the purification materials is analyzed and tested by Flow 3D and Hydraulic model test. Three dimension numerical analysis led from the research that sees abnormal form and the size back of the water purification material conferred the flowing water conduct inside the test channel against the test condition. Comparison it analyzed the flux distribution, a water depth of the channel which establishes the water purification materials the cross section, an interval of the water purification material, a conference with general channel, it change executed. As a result, the cross section ratio of the purification materials against and a flux change from the test which it sees. The interval of the purification materials in order to prevent three dimension that follows in decrease of increase and flux must decide an interval.

Effect of Divergence Ratio on Heat Transfer and Friction Factor in the Diverging Channel (확대 채널에서 확대율이 열전달과 마찰계수에 미치는 효과)

  • Oh, Se-Kyung;Lee, Myung-Sung;Jeong, Seong-Soo;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.64-70
    • /
    • 2013
  • The heat transfer and friction factor characteristics of turbulent flows in three stationary channels have been investigated experimentally to check out the effect of divergence ratio. These are a constant cross-sectional channel and two diverging channels with ratio of divergence(Dho/Dhi) of 1.16 and 1.49. The measurement was conducted within the range of Reynolds numbers from 15,000 to 89,000 and the dimension of uniform cross-sectional test section is $100mm{\times}100mm$ at the cross section and 1,000 mm in length. The measurements of heat transfer coefficients and friction factors in the uniform channels were conducted as a reference. Because of the streamwise flow deceleration, the heat transfer and friction factor characteristics in the diverging channel were quite different from those of the constant cross-sectional channel. The effective friction factors and convective heat transfer coefficients increased with increasing the ratio of divergence of the channel.

Compression tests of cold-formed channel sections with perforations in the web

  • Kwon, Young Bong;Kim, Gap Deuk;Kwon, In Kyu
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.657-679
    • /
    • 2014
  • This paper describes a series of compression tests performed on cold-formed steel channel sections with perforations in the web (thermal studs) fabricated from a galvanized steel plate whose thickness ranged from 1.0 mm to 1.6 mm and nominal yield stress was 295 MPa. The structural behavior and performance of thermal studs undergoing local, distortional, or flexural-torsional buckling were investigated experimentally and analytically. The compression tests indicate that the slits in the web had significant negative effects on the buckling and ultimate strength of thin-walled channel section columns. The compressive strength of perforated thermal studs was estimated using equivalent solid channel sections of reduced thickness instead of the studs. The direct strength method, a newly developed and adopted alternative to the effective width method for designing cold-formed steel sections in the AISI Standard S100 (2004) and AS/NZS 4600 (Standard Australia 2005), was calibrated to the test results for its application to cold-formed channel sections with slits in the web. The results verify that the DSM can predict the ultimate strength of channel section columns with slits in the web by substituting equivalent solid sections of reduced thickness for them.

A Study on the Hydraulic Characteristics in a Compound Channel (복단면(複斷面) 수로(水路)에서의 수리학적(水理學的) 특성(特性)에 관한 연구(研究))

  • Jeong, Dong Guk;Ahn, Soo Hahn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.25-33
    • /
    • 1986
  • Natural river channels usually have a deep section and one or two floodplains, which is called a compound channel. As the general method in the compound channel overestimates the discharge capacity, the momentum transfer due to interaction between the main channel flow and flow over its floodplain must be considered. Scale model experiments are performed for the rectangular main channel with an asymmetrical floodplain. Firstly, velocities are measured at various section grids. Secondary, boundary shear stresses are calculated from velocity distributions. Lastly, in order to determine the apparent shear force, the shear stress distributions are integrated along the wetted perimeter for the full cross-section and equated to the total weight force in the flow direction. The hydraulic characteristics in a compound channel are closely examined with the scales of length, velocity, boundary shear stress, and apparent shear force which are described with the various relationships.

  • PDF

Numerical Analysis on Flow and Bed Change Characteristics by Discharge Variations at the Confluence of Nakdong and Geumho Rivers (낙동강과 금호강 합류부 구간에서 유입유량에 따른 흐름 및 하상변동 특성 변화에 관한 수치모의 연구)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.659-667
    • /
    • 2017
  • This study analyzes the changes in the flow characteristics due to the difference in inflow discharges from the main channel and tributary at the confluence of the Nakdong and Geumho Rivers. The analysis was done using a two-dimensional numerical method. The study site has complicated flow patterns because of the discharge variation from the main stream and tributary. The study section has a meandering main channel, and the hydraulic characteristics cannot be defined with simple conditions such as the confluence angle of the channels or the ratio of the channel widths. An actual flood event in 2012 was applied in the numerical simulation. The maximum velocity occurred in the meandering section after passing the confluence, where a rapid change was expected. A high velocity and large bed change in this section were observed in the simulation results. The variation of discharges from the main channel and tributary was a more dominant factor in the flow and bed changes for the normal flow conditions than the flood event. This indicates that countermeasures for channel stabilization should be considered in the meandering section downstream of the confluence section, and countermeasures for the study section should be investigated.

A Study on Transverse Bed Slope in Channel Bends (유로만곡부의 횡방향 하상경사에 관한 연구)

  • Chung, Yong Tai;Choi, In Ho;Song, Jai Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.143-150
    • /
    • 1994
  • When the transverse bed slope ($S_t$) in channel bend is more than 0.1, it may produce undesirable results on the bed topography of the cross section. The linear relationship for $S_t$ results in zero or negative flow depths at the shallow $S_t$de of the cross section (i.e., inner bank). The exponential relationship for $S_t$ results in excessive flow depths at the deep side of the cross section (i.e., outer bank). This problem can be solved by combining the best features of both relationships described above. From the study, the linear relationship can be applied for the deep $S_t$de of the cross section. But the exponential relationship is suitable for the shallow side. Therefore, the new relationship of $S_t$ is clarified mathematically. A new mathematical model for bed topography is developed herein which takes accounts of the phase lag and the influence of the width to depth ratio. This model is used to analyze two sets of data: one from laboratory channel and the other from natural channel. A good agreement is found between the observed and the calculated bed topography based on the analysis of two sets of data.

  • PDF

Numerical Simulation of Flow Characteristics and Channel Changes with Discharge in the Sharped Meandering Channel in the Naeseongcheon, Korea (내성천 급만곡부에서 유량 변화에 의한 흐름 및 하도변화 수치모의)

  • Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.24-33
    • /
    • 2017
  • This study investigates the flow characteristics and bed changes with discharge using a two-dimensional numerical model, Nays2DH. The water depth at the outer part of curved channel is formed deeper from the narrow part after passing through the curved part. The point bar is developed in the wide section and water depth is shallow in the inside of the curved section. The flow is concentrated in the outer pater of the meandering section, which leads to the deep water. In the downstream section where the straight line formed, the flow is concentrated at the center of the bed. Alternating deep water and shallow places are generated due to the continuous formation of meandering. These characteristics are formed by the influence of strong two-stream flow in meandering stream. The dimensionless tractive force is also large in the region where the flow velocity is concentrated. However, in the narrow and sharp meandering river reaches, the pattern of bed changes and the spatial distribution patterns of flow velocity and dimensionless tractive force are inconsistent in the narrow and sharp meandered reaches due to the strong secondary flow.

Analysis for the Effect of Channel Contraction for Sedimentation Reduction on the Flood Level and Bed Changes in the Lower Nakdong River (낙동강 하류의 퇴사저감을 위한 하폭축소방법이 홍수위변화 및 하상변동에 미치는 영향 분석)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.291-301
    • /
    • 2013
  • Sediment from the upstream channel has been deposited near the Nakdong River Estuary Barrage (NREB) due to the mild slope and decreased velocity. The annual mechanical dredging to ensure the flood capacity has been performed to remove the deposited sediment. However, the dredging method is not considered as an effective countermeasure due to high cost and long time to operate. Therefore, many methods for sedimentation reduction have been proposed for NREB. Especially, the channel contraction method to mitigate sedimentation problem by changing the channel geometry from 2 km to 3 km upstream of NREB has been recently suggested as an effective countermeasure. However, there is the possibility that the channel contraction method induces flood level increase compared to original condition. Therefore, it is necessary to investigate quantitatively the flood level changes in the upstream and downstream section due to the channel contraction method for NREB. In this study, water level changes by 10% channel contraction of whole width has been evaluated using the HEC-RAS model and simulated with and without channel contraction for various flood discharge. As a result, water level in the section where the channel was contracted was decreased by 0.02 m and flood level at the upstream of channel contracted was increased up to 0.015 m for the 500-year flood.