• Title/Summary/Keyword: Channel Parameter

Search Result 664, Processing Time 0.024 seconds

Vector Channel Modeling & Position Estimation using Direction Finding Methods for CDMA Mobile Wireless Systems (CDMA 환경에서 위치추정을 위한 벡터채널 모델링과 Direction Finding을 이용한 위치 추정)

  • 김장섭;이용우;정우곤
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.27-30
    • /
    • 1999
  • A spatio-temporal vector channel model is introduced for the position location (PL) estimation problem for CDMA cellular system environment. Two common ways for the PL make use of the AOA (Angle Of Arrival) and TDOA (Time Difference Of Arrival) from a subscriber to the multiple sensors (base stations). In this paper, we applied the derived vector channel to simulate the multipath channel for the angle of the signal arrival in CDMA systems. Cross-correlation method is a good candidate among other direction finding algorithms available in literature, especially in wideband modulation as in the CDMA system. The PL estimation errors are evaluated for different channels, which are obtained as a parameter of scattering radius of the suggested model. We noted that the number of sensors (base-stations) are related to the PL errors in favor of the available data.

  • PDF

Numerical Analysis of Rotating Channel Flow with an Anisotropic $k-\varepsilon$ Turbulence Model (비등방 $k-\varepsilon$ 난류모델에 의한 회전 덕트유동의 수치해석)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1046-1055
    • /
    • 1997
  • An anisotropic k-.epsilon. turbulence model for predicting the rotating flows is proposed with the simple inclusion of a new parameter dealing with the extra straining effects in the .epsilon.-equation. This model is employed to compute the effects of Coriolis forces on fully-developed flow in a rotating channel. The predicted results indicate that the present model captures fairly well the striking rotational-induced effects on the Reynolds stresses and the mean flow distributions, including the argumentation of turbulent transport on the unstable side (pressure surface) of the channel and its damping on the stable side (suction surface).

Performance Analysis of 32-QAPM System with MRC Diversity in Rician Fading Channel

  • Chun, Jae Young;Kim, Eon Gon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.227-232
    • /
    • 2016
  • In this study, the performance of a 32-quadrature amplitude position modulation (QAPM) system is analyzed under a Rician fading channel condition when the maximal ratio combining (MRC) diversity technique is used in the receiver. The fading channel is modeled as a frequency non-selective slow Rician fading channel corrupted by additive white Gaussian noise (AWGN). QAPM is available to improve BER performance without amplifying transmit power, and MRC diversity makes the performance improvement of QAPM system even bigger by intentionally maximizing SNR. Error performances are shown for the 32-QAPM system and a 32-phase silence shift keying (PSSK) system in order to examine the effects of fading severity, for various values of the Rician parameter, K. The dependence of error rates on MRC diversity is also analyzed. The simulation results show that the BER performance of the 32-QAPM system is better than that of the 32-PSSK system under the above mentioned conditions.

Improved Channel Level Difference Quantization for Spatial Audio Coding

  • Kim, Kwang-Ki;Beack, Seung-Kwon;Seo, Jeong-Il;Jang, Dae-Young;Hahn, Min-Soo
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.99-102
    • /
    • 2007
  • The channel level difference (CLD) is a main parameter in the reference model 0 (RM0) for MPEG Surround. Nevertheless, the CLD quantization method in the RM0 has problems such as the lack of theoretical background and inappropriate quantization levels. In this letter, a new CLD quantization method is proposed based on the virtual source location information which has strength in the quantization process. From experimental results, it is confirmed that the proposed scheme greatly reduces the quantization distortions measured in dB and degrees without any additional complexity.

  • PDF

Study on Fluid Flow and Thermal Characteristics in a Nanoscale Channel Using MD Simulation (분자 동역학 시뮬레이션을 이용한 나노 스케일 채널 내에서의 유체 유동 및 열적 특성에 관한 연구)

  • Choi, Yong-Seok;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1880-1884
    • /
    • 2004
  • To analyze the fluid flow and thermal characteristics in a nanoscale system, the planar Poiseuille flow of a Lennar-Jones liquid through parallel plates formed by fixed atoms is studied using nonequilibrium molecular dynamics simulations. The role of important simulation parameters such as the channel width, the magnitude of external field, the temperatures of the top and bottom plates, and the interaction potential parameter between fluid and wall atoms, which affect flow patterns and heat transfer rate inside the channel, are investigated. Under the various simulation conditions, interesting phenomena deviated from the continuum predictions have found.

  • PDF

Channel Allocation Scheme for Microcell Systems (마이크로셀 시스템을 위한 채널 할당 기법)

  • Lee, Jong-Chan;Mun, Young-Song
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.88-95
    • /
    • 1997
  • PCS(Personal Communications Systems) where the cell structure is microcell can accommodate more subscribers than those of cellular systems where the cell structure is macrocell by reducing the cell radius. To cope with such differences in PCS environment, new channel allocation schemes are needed. In this paper, problems which may arise when channel allocation scheme of cellular is applied to PCS is firstly analyzed. To overcome such problems, a new scheme is proposed. Performance of proposed schemes is analyzed and compared with other channel allocation schemes. Blocking probability is used as the performance parameter.

  • PDF

An efficient Channel Estimation Technique of OFDM-Base Space-Time Coded Wireless LAN Systems

  • Kim, Dong-Ok
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.61-66
    • /
    • 2004
  • This paper presents a way to maximize transmission efficiency and reception ability through transmission diversity technology, which can be adapted to wireless multimedia Wireless LAN system. The presented method is a comparative analysis between a case where parameter a for time average is 0.3.1 with consideration of channel presumption with two types of rms delayed spread, which is 50nsec. 150nsec, for the performance analysis of STTC (Space-Time Trellis Code) adopting time-space ciphering method appropriate for MIMO channel, and performance in the case where presumed channel value from long training column section is applied to according frame in a single frame. The result showed that BER brought SNR improvement of l.0dB in $10^{-3}$ when a was 0.3 than adopting only the long training column, and showed increase of general performance improvement for the sake of time average rather than the case without.

Effect of Curvature on the Detonation Wave Propagation Characteristics in Annular Channels

  • Lee, Su-Han;Jo, Deok-Rae;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.531-535
    • /
    • 2008
  • Present study examines the detonation wave propagation characteristics in annular channel. A normalized value of channel width to the annular radius was considered as a geometric parameter. Numerical approaches used in the previous studies of detonation wave propagation were extended to the present study with OpenMP parallelization for multicore SMP machines. The major effect of the curved geometry on the detonation wave propagation seems to be a flow compression effect, regardless of the detonation regimes. The flow compression behind the detonation wave by the curved geometry of the circular channel pushes the detonation wave front and results in the overdriven detonation waves with increased detonation speed beyond the Chapmann-Jouguet speed. This effect gets stronger as the normalized radius smaller, as expected. The effect seems to be negligible beyond the normalized radius of 10.

  • PDF

Isolated-Word Speech Recognition in Telephone Environment Using Perceptual Auditory Characteristic (인지적 청각 특성을 이용한 고립 단어 전화 음성 인식)

  • Choi, Hyung-Ki;Park, Ki-Young;Kim, Chong-Kyo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.60-65
    • /
    • 2002
  • In this paper, we propose GFCC(gammatone filter frequency cepstrum coefficient) parameter which was based on the auditory characteristic for accomplishing better speech recognition rate. And it is performed the experiment of speech recognition for isolated word acquired from telephone network. For the purpose of comparing GFCC parameter with other parameter, the experiment of speech recognition are carried out using MFCC and LPCC parameter. Also, for each parameter, we are implemented CMS(cepstral mean subtraction)which was applied or not in order to compensate channel distortion in telephone network. Accordingly, we found that the recognition rate using GFCC parameter is better than other parameter in the experimental result.

선형 저수지 유형의 parameter 연구

  • 서영재;고재웅
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.151-158
    • /
    • 1987
  • The purpose of thes study is to estimate the parameters of linear reservoir models in order to derive the instantaneous unit hydrograph from a given small experimental watershed. The linear reservoir model is a conceptual model, consisting of cascade or parallel equal linear reservoirs, preceded by a linear channel which involved NASH, SLR(single linear reservoir)and 2-PLR(two-parallel linear reservoir)model. The NASH model have two parameters N and K, single linear reservoir has one parameter K1 and two-parallel linear reservoirs have two parameters K1, K2;where N denote the number of reservoirs and K is the storage coefficient of each reservoirs.

  • PDF