• 제목/요약/키워드: Channel Coordination

검색결과 115건 처리시간 0.019초

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

Inter-Cell Interference Management for Next-Generation Wireless Communication Systems

  • Kwon, Ho-Joong;Ko, Soo-Min;Seo, Han-Byul;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • 제10권3호
    • /
    • pp.258-267
    • /
    • 2008
  • In this paper, we examine what changes the next-generation wireless communication systems will experience in terms of the technologies, services, and networks and, based on that, we investigate how the inter-cell interference management should evolve in various aspects. We identify that the main driving forces of the future changes involve the data-centric services, new dynamic service scenarios, all-IP core access networks, new physical-layer technologies, and heavy upload traffic. We establish that in order to cope with the changes, the next-generation inter-cell interference management should evolve to 1) set the objective of providing a maximal data rate, 2) take the form of joint management of power allocation and user scheduling, 3) operate in a fully distributed manner, 4) handle the time-varying channel conditions in mobile environment, 5) deal with the changes in interference mechanism triggered by the new physical-layer technologies, and 6) increase the spectral efficiency while avoiding centralized coordination of resource allocation of the users in the uplink channel.

동적 경쟁윈도우를 이용한 Ad Hoc 망에서의 Medium Access Control 프로토콜 (Medium Access Control Protocol for Ad Hoc Networks Using Dynamic Contention Window)

  • 안홍영
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.35-42
    • /
    • 2008
  • DCF 성능 분석 모델에 사용되는 Bianchi의 2차원 Markov Chain 모델은 오류가 없는 이상적 채널에서 충돌 문제만을 다루므로 페이딩, 간섭, 잡음 등 실제 채널의 특성을 반영하지 못한다. 802.11 DCF는 전송실패가 충돌에 의한 것이든, 채널 전송오류에 의한 것이든 경쟁윈도우(CW) 크기를 두 배로 증가시키는 2진 지수후퇴 알고리즘을 작동시킨다. 이상적으로 경쟁윈도우 증가는 혼잡에 의한 충돌방지 때에만 사용되어져야 한다. 통신오류에 의한 경쟁윈도우 증가는 데이터 처리율을 떨어뜨리고 전송지연의 증가를 야기 시킨다. 오류 채널에서는 전송실패 증가가 과도한 이진 지수후퇴를 야기하므로 초기 경쟁윈도우(CW) 크기를 줄여줄 필요가 있다. 본 논문에서는 경쟁윈도우(CW), 타임슬롯에서 전송 확률(${\Im}$), 전송 실패 확률($p_f$) 등이 시스템 성능에 미치는 영향을 정량적, 정성적으로 분석을 하고 등가적으로 CW 값을 얼마큼 줄여야 할지를 제시한다.

  • PDF

Pseudohypoaldosteronism Type 1

  • Cheong, Hae Il
    • Journal of Genetic Medicine
    • /
    • 제10권2호
    • /
    • pp.81-87
    • /
    • 2013
  • Pseudohypoaldosteronism (PHA), a rare syndrome of systemic or renal mineralocorticoid resistance, is clinically characterized by hyperkalemia, metabolic acidosis, and elevated plasma aldosterone levels with either renal salt wasting or hypertension. PHA is a heterogeneous disorder both clinically and genetically and can be divided into three subgroups; PHA type 1 (PHA1), type 2 (PHA2) and type 3 (PHA3). PHA1 and PHA2 are genetic disorders, and PHA3 is a secondary disease of transient mineralocorticoid resistance mostly associated with urinary tract infections and obstructive uropathies. PHA1 includes two different forms with different severity of the disease and phenotype: a systemic type of disease with autosomal recessive inheritance (caused by mutations of the amiloride-sensitive epithelial sodium channel, ENaC) and a renal form with autosomal dominant inheritance (caused by mutations of the mineralocorticoid receptor, MR). In the kidneys, the distal nephron takes charge of the fine regulation of water absorption and ion handling under the control of aldosterone. Two major intracellular actors necessary for the action of aldosterone are the MR and the ENaC. Impairment of the intracellular aldosterone signal transduction pathway results in resistance to the action of mineralocorticoids, which leads to PHA. Herein, ion handling the distal nephron and the clinico-genetic findings of PHA are reviewed with special emphasis on PHA type 1.

Optimal Resource Planning with Interference Coordination for Relay-Based Cellular Networks

  • Kim, Taejoon;An, Kwanghoon;Yu, Heejung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5264-5281
    • /
    • 2017
  • Multihop relay-based cellular networks are attracting much interest because of their throughput enhancement, coverage extension, and low infrastructure cost. In these networks, relay stations (RSs) between a base station (BS) and mobile stations (MSs) drastically increase the overall spectral efficiency, with improved channel quality for MSs located at the cell edge or in shadow areas, and enhanced throughput of MSs in hot spots. These relay-based networks require an advanced radio resource management scheme because the optimal amount of radio resource for a BS-to-RS link should be allocated according to the MS channel quality and distribution, considering the interference among RSs and neighbor BSs. In this paper, we propose optimal resource planning algorithms that maximize the overall utility of relay-based networks under a proportional fair scheduling policy. In the first phase, we determine an optimal scheduling policy for distributing BS-to-RS link resources to RSs. In the second phase, we determine the optimal amount of the BS-to-RS link resources using the results of the first phase. The proposed algorithms efficiently calculate the optimal amount of resource without exhaustive searches, and their accuracy is verified by comparison with simulation results, in which the algorithms show a perfect match with simulations.

The Analysis of Protection Ratio and Its Effect of Interference-to-Noise Ratio for Digital Microwave System with Diversity

  • Suh Kyoung-Whoan;Jang Won-Gyu
    • Journal of electromagnetic engineering and science
    • /
    • 제6권3호
    • /
    • pp.189-195
    • /
    • 2006
  • In this paper, the derivation of the protection ratio for the digital microwave system with diversity is newly suggested for a basic guidance of initial planning for frequency coordination, and computational results are presented for an actual radio frequency band. The net filter discrimination has been also examined to see the effect of the adjacent channel protection ratio caused by adjacent channel interference. In addition, the protection ratios for the space or frequency diversity system are analyzed in terms of diversity improvement factors to find out an equivalent allowable noise-to-interference ratio (N/I) from degraded fade margin. According to results for 6.2 GHz system, with the space diversity of 25 m distance between antennas or the frequency diversity of ${\Delta}f/f=0.05$, under 64-QAM and 60 km at BER $10^{-6}$, the protection ratio can be greatly reduced in comparison to the non-diversity system. So, assuming that only the same protection ratio as the non-diversity system is kept, it is shown that the system with diversity may get more interference level of N/I allowing from 9.0 to - 5.9 dB or from 6.0 to - 4.3 dB for the space or frequency diversity. In consequence, it is concluded that the diversity system is more robust or tolerable for interferences or fades, which may play an important role in overcoming N/I to some extent.

무선 LAN에서 이상 및 페이딩 채널 환경의 DCF 처리율 비교 분석 (A DCF Throughput Analysis of the Ideal and Fading Channel in the Wireless LAN)

  • 이용식;이하철;이병호
    • 한국전자파학회논문지
    • /
    • 제19권7호
    • /
    • pp.741-753
    • /
    • 2008
  • 본 논문에서는 IEEE 802.11a 무선 LAN의 이상적인 채널 환경과 페이딩 채널 환경에서 패킷의 페이로드 크기에 따른 MAC(Medium Access Control) 계층의 CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance) 기반 DCF(Distributed Coordination Function) 처리율을 비교 분석하였다. 이상적인 채널 환경인 경우 에러가 없는 채널을 의미하고, 임의의 전송 주기 동안 패킷을 전송하는 단말이 1개만 존재하며, 다른 단말은 패킷을 수신한 후 응답한다고 가정한다. 페이딩 채널 환경인 경우 채널상에서 비트 에러는 랜덤하게 발생되며, 단말수 n은 고정되고, 각각의 단말은 항상 전송 패킷을 가지고 있는 포화 조건(saturation condition) 하에서 동작된다고 한다. IEEE 802.11a 무선 LAN의 처리율을 구하기 위해 기존 연구에서는 주로 이상적인 채널 환경을 가정하여 최대 처리율을 구하였는데, 실제의 통신 환경은 페이딩 패널이므로 본 연구에서는 $E_b/N_o$를 25 dB, 부 채널에서 직접 수신된 신호와 산란되어 수신된 신호의 전력비 $\xi$는 복합 Rayleigh/Ricean 페이딩을 고려하여 6으로 정하였다. 분석 결과, 이상적인 채널 환경에서의 처리율에 비교하여 페이딩 채널 환경에서의 처리율이 모든 페이로드 크기에서 더 작아진다는 것을 알 수 있으며, 전송율이 증가할수록 이상적인 채널의 최대 처리율에 대한 페이딩 채널의 포화 처리율의 감소 비율이 더 커진다는 것도 알 수 있다.

에드혹 네트워크에서 다중 데이터률을 고려하는 분산 패킷 스케쥴링 (A Multi-Rate Aware Distributed Packet Scheduling in Ad-hoc Networks)

  • 노권문;진영천;유상조
    • 한국통신학회논문지
    • /
    • 제31권7B호
    • /
    • pp.642-651
    • /
    • 2006
  • 에드흑 네트워크에서 패킷 스케줄링 기법들은 대부분 처리량에 기반한 공정성 (throughput-based fairness)를 제공한다. 처리량 기반 공정성을 제공하기 위해 기본적으로 가정하는 것은 채널 용량이 고정되어 있다는 것이다. 그러나 DCF(Distributed Coordination Function)를 제공하여 에드혹 네트워크를 구성하는데 대중적인 방법으로 사용하는 IEEE 802.11b와 802.11g는 채널 상태에 따라 다양한 데이터률을 적용할 수 있기 때문에, 채널 용량이 고정되어 있다는 가정은 실제 환경에서 적합하지 않다. 따라서, 본 논문에서는 이러한 디중 데이터률을 고려하기 위한 플로우별 시간 기반 공정성 (time-based fairness)를 정의하고, 정의한 시간 기반 공정성를 달성하는 패킷 스케쥴링 기법(MRADPS: Multi-Rate Aware Distributed Packet Scheduling)을 제안한다. 시뮬레이션 결과는 MRADPS가 정의한 시간 기반 공정성을 달성하면서 다중 데이터률을 제공하는 에드흑 네트워크의 전체 처리량을 크게 향상시키는 것을 보여준다.

A Multi-Service MAC Protocol in a Multi-Channel CSMA/CA for IEEE 802.11 Networks

  • Ben-Othman, Jalel;Castel, Hind;Mokdad, Lynda
    • Journal of Communications and Networks
    • /
    • 제10권3호
    • /
    • pp.287-296
    • /
    • 2008
  • The IEEE 802.11 wireless standard uses the carrier sense multiple access with collision avoidance (CSMA/CA) as its MAC protocol (during the distributed coordination function period). This protocol is an adaptation of the CSMA/CD of the wired networks. CSMA/CA mechanism cannot guarantee quality of service (QoS) required by the application because orits random access method. In this study, we propose a new MAC protocol that considers different types of traffic (e.g., voice and data) and for each traffic type different priority levels are assigned. To improve the QoS of IEEE 802.11 MAC protocols over a multi-channel CSMA/CA, we have developed a new admission policy for both voice and data traffics. This protocol can be performed in direct sequence spread spectrum (DSSS) or frequency hopping spread spectrum (FHSS). For voice traffic we reserve a channel, while for data traffic the access is random using a CSMA/CA mechanism, and in this case a selective reject and push-out mechanism is added to meet the quality of service required by data traffic. To study the performance of the proposed protocol and to show the benefits of our design, a mathematical model is built based on Markov chains. The system could be represented by a Markov chain which is difficult to solve as the state-space is too large. This is due to the resource management and user mobility. Thus, we propose to build an aggregated Markov chain with a smaller state-space that allows performance measures to be computed easily. We have used stochastic comparisons of Markov chains to prove that the proposed access protocol (with selective reject and push-out mechanisms) gives less loss rates of high priority connections (data and voices) than the traditional one (without admission policy and selective reject and push-out mechanisms). We give numerical results to confirm mathematical proofs.

Study of Dynamic Polling in the IEEE 802.11 PCF

  • Kim, Che-Soong;Lyakhov, Andrey
    • 대한산업공학회지
    • /
    • 제34권2호
    • /
    • pp.140-150
    • /
    • 2008
  • Point Coordination Function (PCF) of the IEEE 802.11 protocol providing a centrally-controlled polling-based multiple access to a wireless channel is very efficient in high load conditions. However, its performance degrades with increasing the number of terminals and decreasing the load, because of wastes related to unsuccessful polling attempts. To solve the problem, we propose and study analytically the generic dynamic polling policy using backoff concept. For this aim, we develop Markov models describing the network queues changes, what allows us to estimate such performance measures as the average MAC service time and the average MAC sojourn time, to show the dynamic polling efficiency and to tune optimally the backoff rule.