• Title/Summary/Keyword: Channel Access Data Unit

Search Result 21, Processing Time 0.029 seconds

Design of Link Cost Metric for IEEE 802.11-based Mesh Routing (IEEE 802.11 MAC 특성을 고려한 무선 메쉬 네트워크용 링크 품질 인자 개발)

  • Lee, Ok-Hwan;Kim, Seong-Kwan;Choi, Sung-Hyun;Lee, Sung-Ju
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.456-469
    • /
    • 2009
  • We develop a new wireless link quality metric, ECOT(Estimated Channel Occupancy Time) that enables a high throughput route setup in wireless mesh networks. The key feature of ECOT is to be applicable to diverse mesh network environments where IEEE 802.11 MAC (Medium Access Control) variants are used. We take into account the exact operational features of 802.11 MAC protocols, such as 802.11 DCF(Distributed Coordination Function), 802.11e EDCA(Enhanced Distributed Channel Access) with BACK (Block Acknowledgement), and 802.11n A-MPDU(Aggregate MAC Protocol Data Unit), and derive the integrated link metric based on which a high throughput end-to-end path is established. Through extensive simulation in random-topology settings, we evaluate the performance of proposed link metric and present that ECOT shows 8.5 to 354.4% throughput gain over existing link metrics.

An Adaptive Contention Windows Adjustment Scheme Based on the Access Category for OnBord-Unit in IEEE 802.11p (IEEE 802.11p에서 차량단말기간에 혼잡상황 해결을 위한 동적 충돌 윈도우 향상 기법)

  • Park, Hyun-Moon;Park, Soo-Hyun;Lee, Seung-Joo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.28-39
    • /
    • 2010
  • The study aims at offering a solution to the problems of transmission delay and data throughput decrease as the number of contending On-Board Units (OBU) increases by applying CSMA medium access control protocol based upon IEEE 802.11p. In a competition-based medium, contention probability becomes high as OBU increases. In order to improve the performance of this medium access layer, the author proposes EDCA which a adaptive adjustment of the Contention Windows (CW) considering traffic density and data type. EDCA applies fixed values of Minimum Contention Window (CWmin) and Maximum Contention Window (CWmax) for each of four kinds of Access Categories (AC) for channel-specific service differentiation. EDCA does not guarantee the channel-specific features and network state whereas it guarantees inter-AC differentiation by classifying into traffic features. Thus it is not possible to actively respond to a contention caused by network congestion occurring in a short moment in channel. As a solution, CWminAS(CWmin Adaptation Scheme) and ACATICT(Adaptive Contention window Adjustment Technique based on Individual Class Traffic) are proposed as active CW control techniques. In previous researches, the contention probabilities for each value of AC were not examined or a single channel based AC value was considered. And the channel-specific demands of IEEE 802.11p and the corresponding contention probabilities were not reflected in the studies. The study considers the collision number of a previous service section and the current network congestion proposes a dynamic control technique ACCW(Adaptive Control of Contention windows in considering the WAVE situation) for CW of the next channel.

Block Ack-based Dynamic A-MPDU Aggregation Scheme in IEEE 802.11n WLAN (IEEE 802.11n WLAN에서 블록 승인 기반의 동적 A-MPDU 집적 방법)

  • Shin, In Cheol;Kim, Dong-Hoi
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.510-520
    • /
    • 2014
  • By adopting the MAC(Media Access Control) protocol which enables to pack multiple MPDUs(MAC-level Protocol Data Units) into a single PPDU(Physical Layer Protocol Data Unit), IEEE 802.11n WLAN supports high throughput. Up to now, there have been a lot of existing channel information-based A-MPDU schemes dynamically determining the number of MSDUs according to the wireless channel condition information which is sent from the receiver to sender. However, the channel information-based scheme has a serious drawback having a high system overhead due to the frequent channel feedback information. To reduce the system overhead, the proposed BA-base dynamic A-MPDU scheme simply chooses the number of MSDUs to be retransmitted by not the frequent channel feedback information but the BA signal representing whether MPSUs belonging to the A-MPDU are received or not. Through NS-2(Network Simulator-2), we found that the proposed scheme had higher throughput and lower packet error rate than the existing fixed A-MPDU scheme.

A Study on Demand Assignment Multiple Access Algorithm based on Seperated Reservation Channel (분리된 예약채널에 의한 요구할당 다중접근방법에 관한 연구)

  • 한정항;송주석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.696-708
    • /
    • 1992
  • In this study, we have several objectives. First, In spite of a fixed bandwidth waste of reservation channel, we maximize the efficiency of transmission channel by the multiple access algorithm that performs channel reservation and data transmission independently, eliminating the frame structure of transmission channel and reserving it by the slot unit . Second, In order to improve the entire system performance, we accommodate the variation of traffic at each earth station more effectively, and accomplish the stable delay characteristics and the equlity of service #or users. For this purpose, we design the satellite channel that consists of reservation channel and transmission channel which are logically separate and operate Independently. We also design a demand assignment multiple access algorithm based on the satellite channel structure.

  • PDF

Resource Allocation scheme for WiMedia UWB MAC (WiMedia UWB MAC의 자원할당 방안)

  • Nam, Jungmin;Baek, Seungho;Huh, Jaedoo;Lee, Sungchang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • Wimedia UWB(Ultra-Wideband) platform provides data rates up to 480Mbps in WPAN (Wireless Personal Area Network). Wimedia conformant devices access to the channels through superframe concept for communications. As the channel resource is limited, the optimal channel time required for each device needs to be estimated to share the resource efficiently among the devices. In this paper, we propose a scheme to estimate the required channel time in a super frame to satisfy the QoS of the application on a device. The channel time is estimated from the service rate which is computed from the TSPEC of the application. In the process of the estimation, we take the frame overhead for data transmission as well as the overhead due to the acknowledgement scheme, preamble, and MDSU size into consideration. We also analyze and compare the throughputs for different acknowledgement scheme, preamble, and MDSU size situations. The estimated channel time required for a given service rate is allocated in the unit of MAS(Medium Access Slot).

  • PDF

Design and Implementation of Modulator Channel Card and VLSI Chip for a Wideband CDMA Wireless Local Loop System (광대역 CDMA WLL 시스템을 위한 변조기 채널 카드 및 VLSI 칩 설계 및 구현)

  • 이재호;강석봉;조경록
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10A
    • /
    • pp.1571-1578
    • /
    • 1999
  • In this paper, we present the Modulator Channel Card and VLSI chip for the Radio Transceiver Unit (RTU) of direct sequence code division multiple access (DS-CDMA) Wireless Local Loop (WLL) System. The Modulator Channel Card is designed and implemented using ASIC's, FPGA's and DSP's. The ASIC, compliance with Common Air Interface specification proposed by ETRI, has 40K gates which is designed to operate at 32MHz, and is fabricated using $0.6\mu\textrm{m}$ CMOS process. The ASIC carries out for I- or Q- phase data channel signal processing at a time, where each data channel processing consists of channel coding, block interleaving, scrambling, Walsh modulation, Pseudo-Noise (PN) spreading, and baseband filtering. The Modulator Channel Card has been integrated as a part of RTU of WLL system and is confirmed that it meets all functional and performance requirements.

  • PDF

An Unequal Protection FEC Scheme for Video over Optical Access Networks

  • Cao, Yingying;Chen, Xue;Wang, Liqian;Li, Xicong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1463-1479
    • /
    • 2013
  • In this paper, we propose an unequal protection physical coding sub-layer (PCS) forward error correction (FEC) scheme for efficient and high-quality transmission of video data over optical access networks. Through identifying and resolving the unequal importance of different video frames and passing this importance information from MAC-layer to PCS, FEC scheme of PCS can be adaptive to application-layer data. Meanwhile, we jointly consider the different channel situations of optical network unit (ONU) and improve the efficiency of FEC redundancy by channel adaptation. We develop a theoretical algorithm and a hardware method to achieve efficient FEC assignment for the proposed unequal protection scheme. The theoretical FEC assignment algorithm is to obtain the optimal FEC redundancy allocation vector that results in the optimum performance index, namely frame error rate, based on the identified differential importance and channel situations. The hardware method aims at providing a realistic technical path with negligible hardware cost increment compared with the traditional FEC scheme. From the simulation results, the proposed Channel and Application-layer data Adaptation Unequal Protection (CAAUP) FEC scheme along with the FEC ratio assignment algorithm and the hardware method illustrates the ability of efficient and high-quality transmission of video data against the random errors in the channel of optical access networks.

Data-Driven-Based Beam Selection for Hybrid Beamforming in Ultra-Dense Networks

  • Ju, Sang-Lim;Kim, Kyung-Seok
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.58-67
    • /
    • 2020
  • In this paper, we propose a data-driven-based beam selection scheme for massive multiple-input and multiple-output (MIMO) systems in ultra-dense networks (UDN), which is capable of addressing the problem of high computational cost of conventional coordinated beamforming approaches. We consider highly dense small-cell scenarios with more small cells than mobile stations, in the millimetre-wave band. The analog beam selection for hybrid beamforming is a key issue in realizing millimetre-wave UDN MIMO systems. To reduce the computation complexity for the analog beam selection, in this paper, two deep neural network models are used. The channel samples, channel gains, and radio frequency beamforming vectors between the access points and mobile stations are collected at the central/cloud unit that is connected to all the small-cell access points, and are used to train the networks. The proposed machine-learning-based scheme provides an approach for the effective implementation of massive MIMO system in UDN environment.

A Design and Implementation of Industrial Fluid Monitoring System (산업공정상의 유체 유동 모니터링 시스템 설계 및 구현)

  • Lee, Won-Joo;Lee, Sang-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.99-106
    • /
    • 2010
  • In this paper, we propose an industrial fluid monitoring system which performs the flow control function and monitors fluid pressure transmitted from MFC(Mass Flow Controller) unit. This system consists of MFC unit, channel device, and monitoring management software. MFC unit transmits the measured data of the fluid pressure to the channel device which would provide the input/output interface between management software, monitoring and MFC unit. The monitoring and management software control and analyze by monitoring real time measurements of fluid pressure from each channel of MFC unit. This software can process 20 channels and 0.1 monitoring cycle which gives 200 data measurement per second (i.e., 720,000 data/hour). At this time, the storage space increases in proportion to the rise of input data. This growth of data and storage space makes loss of data access efficiency. Therefore, it demands the implementation by sensing scheme of change scope and data, which can effectively manage the data.

Performance Evaluation of IEEE 802.11p Based WAVE Communication Systems at MAC Layer (MAC 계층에서의 IEEE 802.11p 기반 WAVE 통신 시스템의 성능 평가)

  • Choi, Kwang Joo;Kim, Jin Kwan;Park, Sang Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.526-531
    • /
    • 2014
  • Vehicular communications have been receiving much attention in intelligent transport systems(ITS) by combining communication technology with automobile industries. In general, vehicular communication can be used for vehicle-to-vehicle(V2V) and vehicle-to-infrastructure( V2I) communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environment(WAVE). WAVE system transmits signal in 5.835~5.925 GHz frequency band with orthogonal frequency division multiplexing(OFDM) signaling. In this paper, after 32 bit processed the channel monitoring in MAC(Media Access Control) layer of WAVE system implemented according to IEEE 802.11p standard, data were received and we evaluated the performance, we built the test bed consisting of OBU(On Board Unit) in the real expressway. We transmitted WSM(WAVE Short Message) and received WSM between OBU wirelessly. And then, we calculated channel occupancy time per one frame and throughput, and evaluated the performance.