• Title/Summary/Keyword: Channel -flow

Search Result 2,830, Processing Time 0.025 seconds

Flow on Grooved Roof Surface

  • Yoon, Tae-Hoon;Hwang, Chang-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.15-25
    • /
    • 1990
  • Spatially varied unsteady flow in a groave-like channel of a sloping roof is analyzed by numerical solution of Saint Venant equations. Depth variations are discussed with different slopes and bed roughness of the channel. Time to equilibrium is found to be inversely proportional to the kinematic flow number. The design of roof drainage system by different schemes is included.

  • PDF

The Analytic Analysis of Suppressing Jet Flow at Guide Tube of Circular Irradiation Hole in HANARO (하나로 원형 조사공의 안내관 제트유동 억제에 대한 해석)

  • Park Y. C.;Wu S. I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.214-219
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed of inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve m (12 m) depth of the reactor pool and cold by the upward flow that the coolant enters the lower inlet of the plenum, rises up through the grid plate and the core channel and exit through the outlet of chimney. A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be Quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to study the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the flow rate, about fourteen kilogram per second (14 kg/s) suppressed the guide tube jet and met the design cooling flow rate in a circular flow tube, and that the fission moly target cooling flow rate met the minimum flow rate to cool the target.

  • PDF

The Flow Characteristics Around Airfoil Moving Reciprocally in a Channel (수로 내에서 왕복 운동하는 에어포일 주위의 유동특성)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Kim, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.536-541
    • /
    • 2008
  • The Flow characteristics of a ship's propulsion mechanism of Weis-Fogh type, in which a airfoil(NACA0010) moves reciprocally in a channel, were investigated by the PIV. Velocity vectors and velocity profiles around the operating and stationary wings were observed at opening angles of ${\alpha}=15^{\circ}$ and $30^{\circ}$, velocity ratios of $V/U=0.5{\sim}1.5$ and Reynolds number of $Re=0.52{\times}104{\sim}1.0{\times}104$. As the results the fluid between wing and wall was inhaled in the opening stage and was jet in the closing stage. The wing in the translating stage accelerated the fluid in the channel. And the flow fields of this propulsion mechanism were unsteady and complex, but those were clarified by flow visualization using the PIV.

A Study of Transonic Combustion in a Diverging Channel Using Asymptotic Analysis (점근해석을 이용한 확대형 채널 내의 천음속 연소에 관한 연구)

  • Lee, Jang-Chang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1604-1610
    • /
    • 2004
  • A steady dilute premixed combustion at transonic speeds in a diverging channel is investigated. The model explores the nonlinear interactions between the near-sonic speed of the flow, the small changes in geometry from a straight channel, and the small heat release due to the one-step first-order Arrhenius chemical reaction. The reactive flow can be described by a nonhomogeneous transonic small-disturbance (TSD) equation coupled with an ordinary differencial equation for the calculation of the reactant mass fraction in the combustible gas. The asymptotic analysis results in the similarity parameters that govern the reacting flow problem. The model is used to study transonic combustion at various amounts of incoming, reactant mass, reaction rates, and channel geometries.

  • PDF

Effect of Inlet Velocity Distribution on the Heat Transfer Coefficient in a Rotating Smooth Channel (입구 속도 분포가 매끈한 회전유로 내 열전달계수에 미치는 영향)

  • Choi, Eun-Yeong;Lee, Yong-Jin;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.76-84
    • /
    • 2011
  • The effect of inlet velocity profile on the heat transfer coefficient in a rotating smooth channel was investigated experimentally. Three simulated inlet flow conditions of fully developed, uniform, and distorted inlet conditions were tested. The Reynolds number based on the channel hydraulic diameter was ranged from 10,000 to 30,000 and the transient liquid crystal technique was used to measure the distribution of the heat transfer coefficient in the rotating channel. Results showed that the overall heat transfer coefficient increased as the Reynolds number increased. Also, the distribution of the heat transfer coefficient was strongly affected by the inlet flow condition. Generally, the fully developed flow simulated condition showed the highest heat transfer coefficient.

On the Most Unstable Disturbance of Channel Flows and Blasius Flow (관 유동과 Blasius 유동에서 가장 불안정한 교란에 관하여)

  • Choi, Sang-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.766-772
    • /
    • 2003
  • The pseudospectral method for stability analysis was used to find the most influential disturbance mode for transition of plane channel flows and Blasius flow at their critical Reynolds numbers. A number of various oblique disturbance waves were investigated for their pseudospectra and resolvent norm contours in each flow, and an exhaustive search method was employed to find the disturbing waves to which the flows become most unstable. In plane Poiseuille flow an oblique disturbance with a wavelength of 3.59h (where h is the half channel width) at an angle $28.7^{\circ}$ was found to be the most influential for the flow transition to turbulence, and in plane Couette flow it is an oblique wave with a wavelength of 3.49h at an angle of $19.4^{\circ}$. But in Blasius flow it was found that the most influential mode is a normal wave with a wavelength of $3.44{\delta}_{999}$. These results imply that the most influential disturbance mode is closely related to the fundamental acoustic wave with a certain shear sheltering in the respective flow geometry.

Runoff and Unsteady Pipe Flow Computation (유출과 부정류 관수로 흐름 계산에 관한 연구)

  • Jeon, Byeong-Ho;Lee, Jae-Cheol;Gwon, Yeong-Ha
    • Water for future
    • /
    • v.23 no.2
    • /
    • pp.251-263
    • /
    • 1990
  • For surcharge flow in a sewer, the slot technique simulates surcharge flow as open - channel flow using a hypothetical narrow open piezometric slot at the sewer crown. The flow in a sewer is described mathematically using the unsteady open - channel Saint-Venant equations. In this study, the computer simulation model(USS-slot) using slot techniques is develeped to simulate the inlet hydrographs to manholes and the flow under pressure as well as free - surface flow in tree - type sewer networks of circular conduits. The inlet hydrographs are simulated by using the rational method or the ILSD progrm. The Saint-Venant equations for unsteady open - channel flow in seweres are solved by using a four - point implicit difference scheme. The flow equations of the sewers and the junction flow equations are solved simulaneously using a sparse matrix solution technique.

  • PDF

Prediction of Bypass Flow Rate through Gas Diffusion Layer in PEMFC with Serpentine Flow Channels (사행 유로를 갖는 고분자 전해질 연료전지의 기체확산층 내부에서의 우회 유동 예측)

  • Jeon, Se-Gye;Kim, Kuoung-Youn
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.293-299
    • /
    • 2012
  • The serpentine flow channel is widely used in polymer electrolyte membrane fuel cells (PEMFCs) to prevent flooding phenomena because it effectively removes liquid water in the flow channel. The pressure drop between inlet and outlet increases as compared with straight channels due to minor losses associated with the corners of the turning configurations. This results in a strong pressure gradient between adjacent channels in specific regions, where some amount of reactant gas can be delivered to catalyst layers by convection through a gas diffusion layer (GDL). The enhancement of the convective flow in the GDL, so-called bypass flow, affects fuel cell performance since the bypass flow influences the reactant transport and thus its concentration over the active area. In the present paper, for the bipolar plate design, a simple analytic model has been proposed to predict the bypass flow in the serpentine type flow channels and validated with three-dimensional numerical simulation results.

Experimental Study of Flow Resistance and Flow Characteristics over Flexible Vegetated Open Channel (개수로 내 식생구간의 흐름저항 및 흐름특성에 관한 실험적 고찰)

  • Yeo, Hong Koo;Park, Moonhyeong;Kang, Joon Gu;Kim, Taewook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.61-74
    • /
    • 2004
  • Hydraulic engineers and scientists working on river restoration recognize the need for a deeper understanding of natural streams as a complex and dynamic system, which involves not only abiotic elements(flow, sediments) but also biotic components. From this point of view, the role played by riverine vegetation dynamics and flow conditions becomes essential. Hydro-mechanic interaction between flow and flexible plants covering a river bed is studied in this paper and some previous works are discussed. Measurements of turbulence and flow resistance in vegetated open channel were performed using rigid and flexible tube. Measuring detailed turbulent velocity profiles within and above submerged and flexible stems allowed to distinguish different turbulent regimes. Some interesting relationships were obtained between the velocity field and the deflected height of the plants, such as a reduced drag coefficient in the flexible stems. Turbulent intensities and Reynolds stresses were measured showing two different regions : above and inside the vegetation domain. In flexible vegetated open channel, the maximum values of turbulent intensities and Reynolds stresses appear above the top of canopy. Method to predict a flow resistance in flexible vegetated open channel is developed by modifying an analytical model proposed by Klopstra et al. (1997). Calculated velocity profiles and roughness values correspond well with flume experiments. These confirm the applicability of the presented model for open channel with flexible vegetation. The new method will be verified in the real vegetated conditions in the near future. After these verifications, the new method should be applied for nature rehabilitation projects such as river restorations.