• Title/Summary/Keyword: Changing algorithm

Search Result 1,015, Processing Time 0.036 seconds

Fast DOA Estimation Algorithm using Pseudo Covariance Matrix (근사 공분산 행렬을 이용한 빠른 입사각 추정 알고리듬)

  • 김정태;문성훈;한동석;조명제;김정구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • This paper proposes a fast direction of arrival (DOA) estimation algorithm that can rapidly estimate incidence angles of incoming signals using a pseudo covariance matrix. The conventional subspace DOA estimation methods such as MUSIC (multiple signal classification) algorithms need many sample signals to acquire covariance matrix of input signals. Thus, it is difficult to estimate the DOAs of signals because they cannot perform DOA estimation during receiving sample signals. Also if the D0As of signals are changing rapidly, conventional algorithms cannot estimate incidence angles of signals exactly. The proposed algorithm obtains bearing response and directional spectrum after acquiring pseudo covariance matrix of each snapshot. The incidence angles can be exactly estimated by using the bearing response and directional spectrum. The proposed DOA estimation algorithm uses only concurrent snapshot so as to obtain covariance matrix. Compared to conventional DOA estimation methods. The proposed algorithm has an advantage that can estimate DOA of signal rapidly.

A Solution Algorithm for Elastic Demand Traffic Assignment Model Based on Dynamic Process (동적과정을 이용한 가변수요 통행배정모형의 알고리듬 개발)

  • Im, Yong-Taek;Kim, Hyeon-Myeong
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.169-178
    • /
    • 2006
  • Traffic assignment has been used both for predicting travel demands and for evaluating the tools for alleviating congestion on road network in advance. Some assignment models have been proposed such as equivalent mathematical minimization method, variational inequality problem, nonlinear complementary problem and fixed point method, in following the principle of Wardrop (1952) that no driver can not Improve his travel cost by unilaterally changing his route. Recently Jin(2005a) presented a traffic assignment model based on dynamic process. This paper proposes a solution algorithm for the model of Jin and assesses the performances. Compared to the Frank-Wolfe method, which has been wildly used for solving the existing assignment models, the proposed algorithm is expected to be more efficient because it does not need to evaluate the objective function. Two numerical examples are used for assessing the algorithm, and they show that the algorithm converges to user equilibrium of Wardrop.

GRASP Algorithm for Dynamic Weapon-Target Assignment Problem (동적 무장할당 문제에서의 GRASP 알고리즘 연구)

  • Park, Kuk-Kwon;Kang, Tae Young;Ryoo, Chang-Kyung;Jung, YoungRan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.856-864
    • /
    • 2019
  • The weapon-target assignment (WTA) problem is a matter of effectively allocating weapons to a number of threats. The WTA in a rapidly changing dynamic environment of engagement must take into account both of properties of the threat and the weapon and the effect of the previous decision. We propose a method of applying the Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, a kind of meta-heuristic method, to derive optimal solution for a dynamic WTA problem. Firstly, we define a dynamic WTA problem and formulate a mathematical model for applying the algorithm. For the purpose of the assignment strategy, the objective function is defined and time-varying constraints are considered. The dynamic WTA problem is then solved by applying the GRASP algorithm. The optimal solution characteristics of the formalized dynamic WTA problem are analyzed through the simulation, and the algorithm performance is verified via the Monte-Carlo simulation.

DSLA: Dynamic Sampling Localization Algorithm Based on Virtual Anchor Node

  • Chen, Yanru;Yan, Bingshu;Wei, Liangxiong;Guo, Min;Yin, Feng;Luo, Qian;Wang, Wei;Chen, Liangyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4940-4957
    • /
    • 2019
  • Compared with the localization methods in the static sensor networks, node localization in dynamic sensor networks is more complicated due to the mobility of the nodes. Dynamic Sampling Localization Algorithm Based on Virtual Anchor (DSLA) is proposed in this paper to localize the unknown nodes in dynamic sensor networks. Firstly, DSLA algorithm predicts the speed and movement direction of nodes to determine a sector sampling area. Secondly, a method of calculating the sampling quantity with the size of the sampling area dynamically changing is proposed in this paper. Lastly, the virtual anchor node, i.e., the unknown node that got the preliminary possible area (PLA), assists the other unknown nodes to reduce their PLAs. The last PLA is regarded as a filtering condition to filter out the conflicting sample points quickly. In this way, the filtered sample is close to its real coordinates. The simulation results show that the DSLA algorithm can greatly improve the positioning performance when ensuring the execution time is shorter and the localization coverage rate is higher. The localization error of the DSLA algorithm can be dropped to about 20%.

Clustering Analysis of Effective Health Spending Cost based on Kernel Filtering Techniques (커널필터링 기법을 이용한 건강비용의 효과적인 지출에 관한 군집화 분석)

  • Jung, Yong Gyu;Choi, Young Jin;Cha, Byeong Heon
    • Journal of Service Research and Studies
    • /
    • v.5 no.2
    • /
    • pp.25-33
    • /
    • 2015
  • As Data mining is a method of extracting the information based on the large data, the technique has been used in many application areas to deal with data in particular. However, the status of the algorithm that can deal with the healthcare data are not fully developed. In this paper, One of clustering algorithm, the EM and DBSCAN are used for performance comparison. It could be analyzed using by the same data. To do this, EM and DBSACN algorithm are changing performance according to the variables in Health expenditure database. Based on the results of the experimental data, We analyze more precise and accurate results using by Kernel Filtering. In this study, we tried comparison of the performance for the algorithm as well as attempt to improve the performance. Through this work, we were analyzed the comparison result of the application of the experimental data and of performance change according to expansion algorithm. Especially, Collects data from the various cluster using the medical record, it could be recommended the effective spending on medical services.

Clustering Algorithm with using Road Side Unit(RSU) for Cluster Head(CH) Selection in VANET (차량 네트워크 환경에서 도로 기반 시설을 이용한 클러스터 헤드 선택 알고리즘)

  • Kwon, Hyuk-joon;Kwon, Yong-ho;Rhee, Byung-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.620-623
    • /
    • 2014
  • Network topology for communication between vehicles are quickly changing because vehicles have a special movement pattern, especially character which is quickly changed by velocity and situation of road. Because of these feature, it is not easy to apply reliable routing on VANET(Vehicular Ad-hoc Network). Clustering method is one of the alternatives which are suggested for overcoming weakness of routing algorithm. Clustering is the way to communicate and manage vehicles by binding them around cluster head. Therefore choosing certain cluster head among vehicles has a decisive effect on decreasing overhead in relevant clustering and determining stability and efficiency of the network. This paper introduces new cluster head selection algorithm using RSU(Road Side Unit) different from existing algorithms. We suggest a more stable and efficient algorithm which decides a priority of cluster head by calculating vehicles' velocity and distance through RSU than existing algorithms.

  • PDF

Match Field based Algorithm Selection Approach in Hybrid SDN and PCE Based Optical Networks

  • Selvaraj, P.;Nagarajan, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5723-5743
    • /
    • 2018
  • The evolving internet-based services demand high-speed data transmission in conjunction with scalability. The next generation optical network has to exploit artificial intelligence and cognitive techniques to cope with the emerging requirements. This work proposes a novel way to solve the dynamic provisioning problem in optical network. The provisioning in optical network involves the computation of routes and the reservation of wavelenghs (Routing and Wavelength assignment-RWA). This is an extensively studied multi-objective optimization problem and its complexity is known to be NP-Complete. As the exact algorithms incurs more running time, the heuristic based approaches have been widely preferred to solve this problem. Recently the software-defined networking has impacted the way the optical pipes are configured and monitored. This work proposes the dynamic selection of path computation algorithms in response to the changing service requirements and network scenarios. A software-defined controller mechanism with a novel packet matching feature was proposed to dynamically match the traffic demands with the appropriate algorithm. A software-defined controller with Path Computation Element-PCE was created in the ONOS tool. A simulation study was performed with the case study of dynamic path establishment in ONOS-Open Network Operating System based software defined controller environment. A java based NOX controller was configured with a parent path computation element. The child path computation elements were configured with different path computation algorithms under the control of the parent path computation element. The use case of dynamic bulk path creation was considered. The algorithm selection method is compared with the existing single algorithm based method and the results are analyzed.

A Single Order Assignment Algorithm Based on Multi-Attribute for Warehouse Order Picking (물류창고 오더피킹에 있어서 다 속성 기반의 싱글오더 할당 알고리즘)

  • Kim, Daebeom
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Recently, as the importance of warehouses has increased, much efforts are being made to improve the picking process in order to cope with a small amount of high frequency and fast delivery. This study proposes an algorithm to assign orders to pickers in the situation where Single Order Picking policy is used. This algorithm utilizes five attributes related to picking such as picking processing time, elapsed time after receipt of order, inspection/packing workstation situation, picker error, customer importance. A measure of urgency is introduced so that the units of measure for each attribute are the same. The higher the urgency, the higher the allocation priority. In the proposed algorithm, the allocation policy can be flexibly adjusted according to the operational goal of the picking system by changing the weight of each attribute. Simulation experiments were performed on a hypothetical small logistics warehouse. The results showed excellent performance in terms of system throughput and flow time.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

Goal-oriented Geometric Model Based Intelligent System Architecture for Adaptive Robotic Motion Generation in Dynamic Environment

  • Lee, Dong-Hun;Hwang, Kyung-Hun;Chung, Chae-Wook;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2568-2574
    • /
    • 2005
  • Control architecture of the action based robot engineering can be divided into two types of deliberate type - and reactive type- controller. Typical deliberate type, slow in reaction speed, is well suited for the realization of the higher intelligence with its capability to forecast on the basis of environmental model according to time flow, while reactive type is suitable for the lower intelligence as it fits to the realization of speedy reactive action by inputting the sensor without a complete environmental model. Looking at the environments in the application areas in which robots are actually used, we can see that they have been mostly covered by the uncertain and unknown dynamic changes depending on time and place, the previously known knowledge being existed though. It may cause, therefore, any deterioration of the robot performance as well as further happen such cases as the robots can not carry out their desired performances, when any one of these two types is solely engaged. Accordingly this paper aims at suggesting Goal-oriented Geometric Model(GGM) Based Intelligent System Architecture which leads the actions of the robots to perform their jobs under variously changing environment and applying the suggested system structure to the navigation issues of the robots. When the robots do perform navigation in human life changing in a various manner with time, they can appropriately respond to the changing environment by doing the action with the recognition of the state. Extending this concept to cover the highest hierarchy without sticking only to the actions of the robots can lead us to apply to the algorithm to perform various small jobs required for the carrying-out of a large main job.

  • PDF