• Title/Summary/Keyword: Changes of state of water

Search Result 366, Processing Time 0.032 seconds

Automation Development in Water and Wastewater Systems

  • Olsson, Gustaf
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.197-200
    • /
    • 2007
  • Advanced control is getting increasingly demanded in water and wastewater treatment systems. Various case studies have shown significant savings in operating costs, including energy costs, and remarkably short payback times. It has been demonstrated that instrumentation, control and automation (ICA) may increase the capacity of biological nutrient removing wastewater treatment plants by 10-30% today. With further understanding and exploitation of the mechanisms involved in biological nutrient removal the improvements due to ICA may reach another 20-50% of the total system investments within the next 10-20 years. Disturbances are the reason for control of any system. In a wastewater treatment system they are mostly related to the load variations, but many disturbances are created also within the plant. In water supply systems some of the major disturbances are related the customer demand as well as to leakages or bursts in the pipelines or the distribution networks. Hardly any system operates in steady state but is more or less in a transient state all the time. Water and energy are closely related. The role of energy in water and wastewater operations is discussed. With increasing energy costs and the threatening climate changes this issue will grow in importance.

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

Time series Analysis of State-space Model and Multiplication ARIMA Model in Dissolved Oxygen Simulation (용존산소 농도모의시 상태공간모형과 승법 ARIMA모형의 시계열 분석)

  • 이원호;서인석;한양수
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.65-74
    • /
    • 2000
  • The purpose of this study is to develop the stochastic stream water quality model for the intake station of Chung-Ju city waterworks in the Han river system. This model was based on the theory of Box-Jenkins Multiplicative ARIMA(SARIMA) and the state space model to simulate changes of water qualities. Variable of water qualities included in the model are temperature and dissolved oxygen(DO). The models development were based on the data obtained from Jan. 1990 to Dec. 1997 and followed the typical procedures of the Box-Jenkins method including identification and estimation. The seasonality of DO and temperature data to formulate for the SARIMA model are conspicuous and the period of revolution was twelve months. Both models had seasonality of twelve months and were formulates as SARIMA {TEX}$(2,1,1)(1,1,1)_{12}${/TEX} for DO and temperature. The models were validated by testing normality and independency of the residuals. The prediction ability of SARIMA model and state space model were tested using the data collected from Jan. 1998 to Oct. 1999. There were good agreements between the model predictions and the field measurements. The performance of the SARIMA model and state space model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the state space model lead to the improved accuracy.

  • PDF

Theoretical Study of the Hydration Effects on the Conformation of N-pivaloyl-L-prolyl-N-methyl-N'-isopropyl-L-alaninamide

  • Choe, Sang-Joon;Kim, Un-Sik;Kang, Young-Kee;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 1984
  • To investigate the hydration effects on the conformational changes of N-pivaloly-L-prolyl-N-methyl-N'-isopropyl-L-alanin amide (PPMIA), the conformational free energy changes have been calculated by using an empirical potential function varying all the independent degrees of freedom of PPMIA backbones. It is found that cis conformers are folded by a strong intramolecular hydrogen bond involving both terminal CO and NH groups whereas trans conformers accommodate the open conformation. Conformers in the free state are proved to be less stable than in the hydrated state. The free energy changes of cis and trans PPMIA due to the hydration are -50.5 and -39.8 kcal/mole, their conformational energy changes are -52.3 and -41.0 kcal/mole, and their conformational entropy changes are -5.9 and -4.0 e.u., respectively. The free energy changes of cis PPMIA to trans PPMIA in the free and hydrated states are 5.3 and 16.0 kcal/mole, their conformational energy changes are 7.6 and 18.8 kcal/mole, and the entropy changes due to the conformational transitions correspond to 7.5 and 9.4 e.u., respectively. From these results, it is found that the bound water molecules play an important role in stabilizing the conformation of PPMIA.

Pretreatment with SAENGCHINYANGHYOLTANG to prevent the pancreatic enzymes changes by streptozotocin in rats (고혈당(高血糖) 쥐의 췌장(膵臟) 효소활성(酵素活性)에 미치는 생진양혈탕(生津養血湯)의 영향(影響))

  • Kim, Shin-Soek;Choi, Jong-Won;Lee, Cheol-Whan
    • The Journal of Korean Medicine
    • /
    • v.15 no.2 s.28
    • /
    • pp.429-444
    • /
    • 1994
  • The present study was undertaken in order to elucidate the effect of pretreatment with Saengchinyanghyoltang(SYT) on changes in serum glucose level, body weight. water consumption. serum insulin concentration and activities of pancreatic enzymes in rats treated with streptozocin(STZ)-induced diabetic state. Histological studies were also carried out to elevate the effects on pancreatic tissues and Langelhans islet cells. SYT pretreatment in STZ diabetic rats inhibited the rise of fasting serum glucose concentration and water consumption. Pretreatment with SYT significantly increased the concentration of blood insulin and body weight changes compared to the STZ-treated group. Pancreatic lipase and trypsin activities were increased. but amylase activity was decreased and pancreatic ${\beta}-cell$ was destroyed by STZ but. pretreatment with SYT prevented these STZ-induced changes.

  • PDF

The Foul Smelling from Sewer Pipe near Large Apartment Complexes and its Countermeasures II: The Cause for Foul Odors of Sewer Pipes in Residential Areas (대규모 아파트 단지주변 하수관로의 악취 발생과 대책 II: 주거지역 하수관로의 악취원인과 대책)

  • Lee, Jang-Hown;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.631-639
    • /
    • 2007
  • This study investigated the construction and operation status of sewer pipes and water-purifier tanks near densely populated areas like large apartment complexes, in order to find out cause for offensive orders. The study results revealed that the main cause arose from the water-purifier tank and public sewer pipes near ordinary residential areas. First, in case of independent water-purifier tanks, the air is forced into the rotten part of large tanks nearby which should be operated in an anaerobic state, so that the tank changes into an aerobic state, or dirty water, which is returned during the sludge return process, falls on the top of the rotten tank, preventing scum from forming within the tank. Such problems cause incompletely purified water in the purifier tank to be discharged, which in turn results in filthy water. Second, in case of public sewer pipes, deteriorated or aging pipes, or the mixture of rain water and dirty water by mixing up combined and separated sewers system can cause foul odors in residential areas. Therefore, offensive odors in residential areas can be radically reduced through the appropriate construction and management of facilities including water-purifier tanks. As well, if more separate sewers are installed as part of an improvement project for public sewer pipes, complaints about foul smell can be minimized.

Climate changes impact on water resourcesinYellowRiverBasin,China

  • Zhu, Yongnan;Lin, Zhaohui;Wang, Jianhua;Zhao, Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.203-203
    • /
    • 2016
  • The linkage between climate change and water security, i.e., the response of water resource to the future climate change, have been of great concern to both scientific community and policy makers. In this study, the impact of future climate on water resources in Yellow River Basin in North of China has been investigated using the Coupled Land surface and Hydrology Model System (CLHMS) and IPCC AR5 projected future climate change in the basin. Firstly, the performances of 14 IPCC AR5 models in reproducing the observed precipitation and temperature in China, especially in North of China, have been evaluated, and it's suggested most climate models do show systematic bias compared with the observation, however, CNRM-CM5、HadCM5 and IPSL-CM5 model are generally the best models among those 14 models. Taking the daily projection results from the CNRM-CM5, along with the bias-correction technique, the response of water resources in Yellow river basin to the future climate change in different emission scenarios have been investigated. All the simulation results indicate a reduction in water resources. The current situation of water shortage since 1980s will keep continue, the water resources reduction varies between 28 and 23% for RCP 2.6 and 4.5 scenarios. RCP 8.5 scenario simulation shows a decrease of water resources in the early and mid 21th century, but after 2080, with the increase of rainfall, the extreme flood events tends to increase.

  • PDF

Identification of Electrical Resistance of Fresh State Concrete for Nondestructive Setting Process Monitoring

  • Shin, Sung Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.414-420
    • /
    • 2015
  • Concrete undergoes significant phase changes from liquid to solid states as hydration progresses. These phase changes are known as the setting process. A liquid state concrete is electrically conductive because of the presence of water and ions. However, since the conductive elements in the liquid state of concrete are consumed to produce non-conductive hydration products, the electrical conductivity of hydrating concrete decreases during the setting process. Therefore, the electrical properties of hydrating concrete can be used to monitor the setting process of concrete. In this study, a parameter identification method to estimate electrical parameters such as ohmic resistance of concrete is proposed. The effectiveness of the proposed method for monitoring the setting process of concrete is experimentally validated.

MASS TRANSPORT IN FINITE AMPLITUDE WAVES

  • ;Robert T. Hudspeth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1988.07a
    • /
    • pp.29-36
    • /
    • 1988
  • A general scheme is developed which determines the Lagrangian motions of water particles by the Eulerian velocity at their mean positions by use of Taylor's theorem. Utilizing the Stokes finite-amplitude wave theory, the mass transport velocity which includes the effects of higher-order wave components is determined. The fifth-order theory predicts the mass transport velocity less than that given by the existing second-order theory over the whole depth. Limited experimental data for changes in wave celerity in closed wave flumes are compared with the theoretical predictions.

  • PDF

A micro-computed tomographic study using a novel test model to assess the filling ability and volumetric changes of bioceramic root repair materials

  • Fernanda Ferrari Esteves Torres;Jader Camilo Pinto;Gabriella Oliveira Figueira;Juliane Maria Guerreiro-Tanomaru;Mario Tanomaru-Filho
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.2.1-2.8
    • /
    • 2021
  • Objectives: New premixed bioceramic root repair materials require moisture for setting. Using micro-computed tomography (micro-CT), this study evaluated the filling ability and volumetric changes of calcium silicate-based repair materials (mineral trioxide aggregate repair high-plasticity [MTA HP] and Bio-C Repair, Angelus), in comparison with a zinc oxide and eugenol-based material (intermediate restorative material [IRM]; Dentsply DeTrey). Materials and Methods: Gypsum models with cavities 3 mm deep and 1 mm in diameter were manufactured and scanned using micro-CT (SkyScan 1272. Bruker). The cavities were filled with the cements and scanned again to evaluate their filling capacity. Another scan was performed after immersing the samples in distilled water for 7 days to assess the volumetric changes of the cements. The statistical significance of differences in the data was evaluated using analysis of variance and the Tukey test with a 5% significance level. Results: Bio-C Repair had a greater filling ability than MTA HP (p < 0.05). IRM was similar to Bio-C and MTA HP (p > 0.05). MTA HP presented the largest volumetric change (p < 0.05), showing more volume loss than Bio-C and IRM, which were similar (p > 0.05). Conclusions: Bio-C Repair is a new endodontic material with excellent filling capacity and low volumetric change. The gypsum model proposed for evaluating filling ability and volumetric changes by micro-CT had appropriate and reproducible results. This model may enhance the physicochemical evaluation of premixed bioceramic materials, which need moisture for setting.