• Title/Summary/Keyword: Changes of seawater

Search Result 283, Processing Time 0.023 seconds

Statics variation analysis due to spatially moving of a full ocean depth autonomous underwater vehicle

  • Jiang, Yanqing;Li, Ye;Su, Yumin;Cao, Jian;Li, Yueming;Wang, Youkang;Sun, Yeyi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.448-461
    • /
    • 2019
  • Changes in gravity and buoyancy of a Full Ocean Depth Autonomous Underwater Vehicle (FOD-AUV) during its descending and ascending process must be considered very carefully compared with a Human Occupied Vehicle (HOV) or a Remotely Pperated Vehicle (ROV) whose activities rely on human decision. We firstly designed a two-step weight dropping pattern to achieve a high descending and ascending efficiency and a gravity-buoyancy balance at designed depth. The static equations showed that gravity acceleration, seawater density and displacement are three key aspects affecting the balance. Secondly, we try our best to analysis the gravity and buoyancy changing according to the previous known scientific information, such as anomaly of gravity acceleration, changing of seawater states. Finally, we drew conclusion that gravity changes little (no more than 0.1kgf, it is impossible to give a accurate value). A density-depth relationship at the Challenger Deep was acquired and the displacement changing of the FOD-AUV was calculated preciously.

Evaporation Characteristics of Oil and Abundance Ratio of Hydrocarbon Compounds at Different Temperatures (온도 변수에 대한 유류의 휘발특성 및 탄화수소 화합물의 존재비에 관한 연구)

  • Choi, Jung-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1116-1123
    • /
    • 2021
  • Oil spilled in seawater undergoes physical and chemical changes as well as biological degradation through various weathering processes, such as evaporation, diffusion, dispersion, emulsification, dissolution, oxidation, and sedimentation. Evaporation is one of the most immediate and prompt weathering processes, and it has the greatest influence on majority of pollutants. In this study, the evaporation characteristics of different oil samples were studied; the volatilization characteristics of gasoline, kerosene, and diesel were compared at average seawater (25 ℃) and near-equator (35 ℃) temperatures. The oil samples were pre-treated and then collected at regular intervals. Gas chromatography-mass spectrometry analysis was performed, and the changes in the amount of the hydrocarbons were calculated.

A Comparative Study on the Use of Seawater and Sea Salt in Nutrient Elimination (영양염제거에서 해수 및 해수염에 관한 비교연구)

  • Cainglet, Annaliza Pabrua;Kim, Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.829-835
    • /
    • 2016
  • An excess in the nutrients such as nitrogen and phosphate leads to a phenomenon called eutrophication. In order to avoid this, numerous methods have been used to remove excess nutrients in the water. In this study, the use of a chemical method was assessed through the formation of magnesium ammonium phosphate. The difference in the removal efficiency of seawater and sea salt solution as primary sources of $Mg^{2+}$ ions and $Ca^{2+}$ ions for the formation of magnesium ammonium phosphate (MAP) and hydroxyapatite (HAP) respectively, were observed, taking into account the changes in pH and concentration. The results showed that seawater removed about 90 % phosphate and less than 50 % ammonia in sewage water condition, whereas the sea salt solution removed almost 90 % phosphate and 70 % ammonia in solution at pH 9 and 10 mM concentration of sea salt which further increases as the optimum ${Mg/PO_4}^{3-}$, ${NH_4}^+$ ratio reaches 2. The difference in the removal efficiency of seawater and sea salt was due to the fact that the set-ups were prepared in different conditions. This study suggests that both seawater and sea salt can be used to remove nutrients from the water. The relatively higher removal of phosphate can be explained by the formation of HAP from free $Ca^{2+}$ ions initially present in seawater and sea salt solution.

Application of Seawater Plant Technology for supporting the Achievement of SDGs in Tarawa, Kiribati (키리바시 타라와의 지속가능발전목표 달성 지원을 위한 해수플랜트 기술 활용)

  • Choi, Mi-Yeon;Ji, Ho;Lee, Ho-Saeng;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.136-143
    • /
    • 2021
  • Pacific island countries, including Kiribati, are suffering from a shortage of essential resources as well as a reduction in their living space due to sea level rise and coastal erosion from climate change, groundwater pollution and vegetation changes. Global activities to solve these problems are being progressed by the UN's efforts to implement SDGs. Pacific island countries can adapt to climate change by using abundant marine resources. In other words, seawater plants can assist in achieving SDGs #2, #6 and #7 based on SDGs #14 in these Pacific island countries. Under the auspice of Korea International Cooperation Agency (KOICA), Korea Research Institute of Ships and Ocean Engineering (KRISO) established the Sustainable Seawater Utilization Academy (SSUA) in 2016, and its 30 graduates formed the SSUA Kiribati Association in 2017. The Ministry of Oceans and Fisheries (MOF) of the Republic of Korea awarded ODA fund to the Association. By taking advantage of seawater resource and related plants, it was able to provide drinking water and vegetables to the local community from 2018 to 2020. Among the various fields of education and practice provided by SSUA, the Association hope to realize hydroponic cultivation and seawater desalination as a self-support project through a pilot project. To this end, more than 140 households are benefiting from 3-stage hydroponics, and a seawater desalination system in connection with solar power generation was installed for operation. The Association grows and supplies vegetable seedlings from the provided seedling cultivation equipment, and is preparing to convert to self-support business from next year. The satisfaction survey shows that Tarawa residents have a high degree of satisfaction with the technical support and its benefits. In the future, it is hoped that SSUA and regional associations will be distributed to neighboring island countries to support their SDGs implementations.

Assessment of the Impact of Climate Change on Marine Ecosystem in the South Sea of Korea (기후변화가 남해 해양생태계에 미치는 영향평가)

  • Ju, Se-Jong;Kim, Se-Joo
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.197-199
    • /
    • 2012
  • According to the IPCC climate change scenario (A1B scenario), the surface seawater temperature of the South Sea of Korea by 2100 may be $2-3.5^{\circ}C$ higher than at present, and seawater pH may decrease from 8.1 to 7.8, due to the increase in atmospheric $CO_2$, which is predicted to increase in concentration from 380 to 750 ppm. These changes may not only intensify the strength of typhoons/storm surges but also affect the function and structure the marine ecosystem. In order to assess the impact of climate change on the marine ecosystem in Korean waters, the project named the 'Assessment of the impact of climate change on marine ecosystem in the South Sea of Korea' has been supported by the Ministry of Land, Transport and Maritime Affairs, from 2008. The goal of this project is to enhance our ability to adapt and prepare for the future environmental changes through the reliable predictions based on the knowledge obtained from projects like this. In this respect, this project is being conducted to investigate the effects of climate/marine environment changes (ocean warming and acidification), and to predict future changes of the structure and function of the ecosystem in the South Sea of Korea. This special issue contains 6 research articles, which are the highlights of the studies carried out through this project.

Resilience Assessment for Aquifers close to Groundwater Wells in the Nakdong River Estuary (낙동강 하구 지하수 관정 주변 대수층의 리질리언스 평가)

  • Soonyoung Yu;Ho-Rim Kim;Eun-Kyeong Choi;Sung-Wook Kim;Dong-Woo Ryu;Yongcheol Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.3
    • /
    • pp.12-28
    • /
    • 2023
  • Each national groundwater monitoring well showed distinct change patterns in groundwater levels and electrical conductivity (EC) in the Nakdong River Estuary, implying different external forces (EFs) on each well. According to the annual average data in 1997-2020, seawater was invaded into Well C. The desalination rate of -1,062 µS/cm/year represents the adaptive capacity of the well to seawater intrusion. The water levels and EC in Well E responded to precipitation, indicating the low absorptive capacity to climate changes. Meanwhile, Well B showed constant increases in water levels, suggesting that problems by rising groundwater should be considered in the study area where confined aquifers are overlaid by clay aquitards. The other wells showed consistent water levels and EC, indicating resilience to EFs. Here, resilience is the capacity of a well to resist changes by EFs, including the absorptive and adaptive capacity. The resilience of Wells E and F to climate changes was quantitatively compared using a resilience cost (RC). The RC showed Well F was more resilient than Well E, and the bedrock aquifer was more resilient than the alluvium aquifer, supporting the usefulness of RC. The resilience assessment against EFs (e.g., changes in land use and climate) helps sustainable groundwater management.

Characterization of cannibalism and blood in fleshy shrimp, Fenneropenaeus chinensis according to rearing water (사육수 조성에 따른 대하(Fenneropenaeus chinensis)의 공식 및 혈액학적 성상의 변화)

  • Su Kyoung, Kim;Seokryel, Kim
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.185-193
    • /
    • 2022
  • This study investigated carnival behavior in the nursery stage of Fenneropenaeus chinensis. In order to suppress the carnival behavior and improve the survival rate, it was examined whether there was a carnivalism inhibitory effect according to the rearing water of shrimp. In addition, their blood physiological changes were observed. As a result, in the experimental group with the size difference of F. chinensis, the survival rate was the highest in the biofloc technology (BFT) rearing water of olive flounder (75%), and in the experimental group without the size difference, the survival rate was the highest in the seawater experiment group (93%). In both experimental groups, rate of carnival behavior was observed to be low in the fed experimental group regardless of the size difference of F. chinensis. As a result of blood cell analysis of F. chinensis according to the rearing water, the percentage of granulocytes was the highest in the BFT rearing water of flounder (75%) and the lowest in the filtered seawater group (66%). The proportion of semi-granulocytes was the highest at 11% in the shrimp BFT rearing water, and the lowest at 7% in the filtered seawater. The proportion of hyalinocytes was highest in filtered seawater (27%) and lowest in flounder BFT rearing water (16%). These results suggest that carnival behavior and blood composition of F. chinensis may be different depending on the conditions of the rearing water in the nursery stage.

Applicability Assessment of Acid Treated Red Mud as Adsorbent Material for Removal of Six-valent Chromium from Seawater (해수에서 6가 크롬 제거를 위한 흡착제로서의 산처리 적니 적용성 검토)

  • Kang, Ku;Um, Byung-Hwan;Kim, Young-Kee;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.17-23
    • /
    • 2013
  • Six-valent chromium ($Cr^{6+}$) is a highly toxic pollutant, supplied in a variety of industrial activities such as leather tanning, cooling tower blowdown, and plating. Herein, we investigated the removal of $Cr^{6+}$ from aqueous phase using low-cost adsorbents. Steel slag, montmorillonite, illite, kaolinite, red mud, and acid treated red mud with 0.5, 1.0, and 2.0 M HCl were used as adsorbent for the removal of $Cr^{6+}$ and the results showed that acid treated red mud with 2.0 M HCl (ATRM-2.0 M) had higher adsorption capacity of $Cr^{6+}$ than other adsorbents used. Accordingly, $Cr^{6+}$ removal by ATRM-2.0 M were studied in a batch system with respect to changes in initial concentration of $Cr^{6+}$, initial solution pH, adsorbent dose, adsorbent mixture, and seawater. Equilibrium sorption data were described well by Freundlich isotherm model. The influence of initial solution pH on $Cr^{6+}$ adsorption was insignificant. The use of the ATRM-2.0 M alone was more effective than mixing it with other adsorbents including red mud, zeolite, oyster shell, lime stone, and montmorillonite for the removal of $Cr^{6+}$. The $Cr^{6+}$ removal of the ATRM-2.0 M was slightly less in seawater than deionized water, resulting from the presence of anions in seawater competing for the favorable adsorption site on the surface of ATRM-2.0 M. It was concluded that the ATRM-2.0 M can be used as a potential adsorbent for the removal of $Cr^{6+}$ from the aqueous solutions.

Long-term Environmental Changes and the Interpretations from a Marine Benthic Ecologist's Perspective (I) - Physical Environment

  • Yoo Jae-Won;Hong Jae-Sang;Lee Jae June
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.199-209
    • /
    • 1999
  • Before investigating the long-term variations in macrobenthic communities sampled in the Chokchon macrotidal flat in Inchon, Korea, from 1989 to 1996, we need to understand how environmental factors in the area vary. As potential governing agents of tidal flat communities, abiotic factors such as mean sea level, seawater, air temperature, and precipitation were considered. Data for these factors were collected at equal intervals from 1976 or 1980 to 1996, and were analyzed using a decomposition method. In this analysis, all the above variables showed strong seasonal nature, and yielded a significant trend and cyclical variation. Positive trends were seen in the seawater and air temperatures, and based upon this relationship, it was found that the biological sampling period of our program has been carried out during warmer periods in succession. This paper puts forth some hypotheses concerning the response of tidal flat macrobenthos communities to the changing environment including mild winters in succession.

  • PDF

Distribution of Pathogenic Vibrios in the Aquatic Environment Adjacent to Coastal Areas of South Korea and Analysis of the Environmental Factors Affecting Their Occurrence (2016년도 국내 해양환경내 병원성 비브리오균의 분포 및 해양환경인자간의 상관성 분석)

  • Jeong, Young-Il;Myung, Go-Eun;Choi, Eun-Jin;Soh, Sang-Moon;Park, Gi-Jun;Son, Tae-Jong
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • Objectives: The pathogenic Vibrios genus denotes halophilic bacteria that are distributed in aquatic environments, including both sea and freshwater. Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus are the most important species since they can be potent human pathogens and leading causes of septicemia, wound infections, and seafood borne gastroenteritis. The recent emergence of a potential pandemic clone, V. cholera serotype O1 and the cholera outbreak in South Korea in 2016 indicates the importance of consistent surveillance of pathogenic Vibrio genus within coastal areas. Methods: The present study was undertaken to determine where and how vibrios live in the aquatic environment adjacent to coastal areas of South Korea. For this survey, a total of 838 samples were obtained at 35 different sites in South Korean coastal areas during the period from January 2016 to December 2016. Pathogenic vibrios was determined using the real-time PCR method, and its clones were isolated using three selective plating media. We also monitored changes in seawater and atmospheric temperature, salinity, turbidity, and hydrogen ion concentration at the collection points. Results: The total isolation rates of V. vulnificus, V. cholera (non-pathogenic, non-O1, non-O139 serogroups), and V. parahaemolyticus from seawater specimens in 2016 were 14.2, 13.48, and 67.06%, respectively. Conclusions: The isolation rates of pathogenic vibrios genus showed a positive correlation with temperature of seawater and atmosphere but were negatively correlated with salinity and turbidity.