• 제목/요약/키워드: Changes in vegetation

검색결과 679건 처리시간 0.028초

Inter-Annual and Intra-Annual Variabilities of NDVI, LAI and Ts Estimated by AVHRR in Korea

  • Ha, Kyung-Ja;Oh, Hyun-mi;Kim, Ki-Young
    • 대한원격탐사학회지
    • /
    • 제17권2호
    • /
    • pp.111-119
    • /
    • 2001
  • This study analyzes time variability of the normalized difference vegetation index (NDVI), the leaf area index (LAI) and surface temperature (Ts) estimated from AVHRR data collected from across the Korean peninsula from 1981 to 1994. In the present study, LAI defined as vegetation density, as a function of NDVI applied for the vegetation types and Ts defined by the split-window formulation of Becker and Li (1990) with emissivity of a function of NDVI, are used. Results of the inter-annual, intra-annual and intra-seasonal variabilities in Korea show: (1) Inter-annual variability of NDVI is generally larger in the southem and eastern parts of the peninsula than in the western part. This large variability results from the significant mean variation. (2) Inter-annual variability of Ts is larger in the areas of smaller NDVI. This result shows that the NDVI play a small role in emissivity. (3) Inter-annual variability of LAI is larger in the regions of higher elevation and urban areas. Changes in LAI are unlikely to be associated with NDVI changes. (4) Changes in NDVI and Ts are likely dominant in July and are relatively small in spring and fall. (5) Urban effect would be obvious on the time-varying properties of NDVI and Ts in Seoul and the northern part of Taejon, where NDVI decreases and Ts increases with a significant magnitude.

Impact of Land Use Land Cover Change on the Forest Area of Okomu National Park, Edo State, Nigeria

  • Nosayaba Osadolor;Iveren Blessing Chenge
    • Journal of Forest and Environmental Science
    • /
    • 제39권3호
    • /
    • pp.167-179
    • /
    • 2023
  • The extent of change in the Land use/Land cover (LULC) of Okomu National Park (ONP) and fringe communities was evaluated. High resolution Landsat imagery was used to identify the major vegetation cover/land use systems and changes around the national park and fringe communities while field visits/ground truthing, involving the collection of coordinates of the locations was carried out to ascertain the various land cover/land use types identified on the images, and the extent of change over three-time series (2000, 2010 and 2020). The change detection was analyzed using area calculation, change detection by nature and normalized difference vegetation index (NDVI). The result of the classification and analysis of the LULC Change of ONP and fringe communities revealed an alarming rate of encroachment into the protected area. All the classification features analyzed had notable changes from 2000-2020. The forest, which was the dominant LULC feature in 2000, covering about 66.19% of the area reduced drastically to 36.12% in 2020. Agricultural land increased from 6.14% in 2000 to 34.06% in 2020 while vegetation (degraded land) increased from 27.18% in 2000 to 38.89% in 2020. The magnitude of the change in ONP and surroundings showed the forest lost -247.136 km2 (50.01%) to other land cover classes with annual rate change of 10%, implying that 10% of forest land was lost annually in the area for 20 years. The NDVI classification values of 2020 indicate that the increase in medium (399.62 km2 ) and secondary high (210.17 km2 ) vegetation classes which drastically reduced the size of the high (38.07 km2 ) vegetation class. Consequent disappearance of the high forests of Okomu is inevitable if this trend of exploitation is not checked. It is pertinent to explore other forest management strategies involving community participation.

지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축 (Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제25권2호
    • /
    • pp.95-105
    • /
    • 2009
  • 지상 관측으로부터 수집된 시계열 원격탐사 자료는 관측환경의 악화와 감지 시스템의 기계적 고장과 같은 관측 장애요인에 의해 많은 미관측 및 악성 자료를 가지게 된다. 육상의 지표면 parameters는 기후와 주로 연관되어 있으므로 육상 관측 위성 영상에 나타나는 많은 물리적 과정은 계절 주기에 따른 시간적 변화를 보인다. 본 연구에서 제안된 적응 feedback 시스템은 계절에 따라 변하는 물리적 과정을 포함하는 시계열 원격 탐사 영상 시리즈를 재구축한다. 이 시스템에서는 계절적 변화를 추적하기 위하여 하모닉 모형을 사용하고 수치 영상 모형의 공간적 의존성을 나타내기 위해 Gibbs Random Field를 사용한다. 재구축 과정을 통하여 구성된 적응 하모닉 모형을 사용하여 지표면 연속적 변화를 감시할 수 있다. 본 연구에서는 1996년부터 2000년까지 한반도로부터 관측된 AVHRR 영상 시리즈를 일 주일 간격으로 정적 합성하여 NDVI 시리즈를 구하고 하모닉 모형을 사용하는 적응 재구축 시스템을 이 NDVI 시리즈에 적용하여 한반도 식생 변화를 추적하였다. 연구 결과는 하모닉 적응 재구축 시스템이 실시간 지표면 변화 감시를 하는데 매우 효과적인 수단이 될 것이라는 잠재성을 보여준다.

Analysis of Hydraulic Characteristics According to the Cross-Section Changes in Submerged Rigid Vegetation

  • Lee, Jeongheum;Jeong, Yeon-Myeong;Kim, Jun-Seok;Hur, Dong-Soo
    • 한국해양공학회지
    • /
    • 제36권5호
    • /
    • pp.326-339
    • /
    • 2022
  • Recently, not only Korea but also the world has been suffering from problems related to coastal erosion. The hard defense method has been primarily used as a countermeasure against erosion. However, this method is expensive and has environmental implications. Hence, interest in other alternative methods, such as the eco-friendly vegetation method, is increasing. In this study, we aim to analyze the hydraulic characteristic of submerged rigid vegetation according to the cross-sectional change through a hydraulic experiment and numerical simulation. From the hydraulic experiment, the reflection coefficient, transmission coefficient, and energy dissipation coefficient were analyzed according to the density, width, and multi-row arrangement of the vegetation zone. From numerical simulations, the flow field, vorticity distribution, turbulence distribution, and wave distribution around the vegetation zone were analyzed according to the crest depth, width, density, and multi-row arrangement distance of the vegetation zone. The hydraulic experiment results suggest that the transmission coefficient decreased as the density and width of the vegetation zone increased, and the multi-row arrangement condition did not affect the hydraulic characteristics significantly. Moreover, the numerical simulations showed that as the crest depth decreased, the width and density of vegetation increased along with vorticity and turbulence intensity, resulting in increased wave height attenuation performance. Additionally, there was no significant difference in vorticity, turbulence intensity, and wave height attenuation performance based on the multi-row arrangement distance. Overall, in the case of submerged rigid vegetation, the wave energy attenuation performance increased as the density and width of the vegetation zone increased and crest depth decreased. However, the multi-row arrangement condition did not affect the wave energy attenuation performance significantly.

댐 건설 기간 수위변화가 하반림 일대 습지 식생에 미치는 영향 -한탄강댐을 사례로- (Effects of Water Level Change on Wetland Vegetation in the Area of Riparian Forest for Dam Construction Period -Focused on the Hantan River Dam-)

  • 박현철;이정환;이관규
    • Journal of Forest and Environmental Science
    • /
    • 제30권1호
    • /
    • pp.76-84
    • /
    • 2014
  • This study was performed to monitor the effects of water level change on changes of landscape, vegetation community, and species diversity of riparian forest. Hantan river dam, study area, has been constructed in the area of Chansoo-myeon, Pocheon-si and Yeoncheon-eup, Yeoncheon-gun, Gyeonggi-do, which is a dam for flood control only in flooding season. Landscape changes were notable after the construction of coffer dam, and the changes were caused by water level increase in areas of riparian forests which consisted of mainly withered willow as a dominant species in the flooding season. It changed vegetation communities of riparian forest from Phragmites japonica and Salix koreensis to Phragmites japonica. Species diversity index was lowest in 2010 when the coffer dam was constructed and showed an increasing trend later. Thus, this study is well in agreement with a previous report that plants of the genus Salix wither by muddy water during flooding and also suggests, controlling water level of river and prediction of water level change's effects should be considered when any facilities are planned.

MNDWI와 NDVI의 통합을 통한 내륙습지의 육화현상 추적: 우포늪을 사례로 (Monitoring the Desiccation of Inland Wetland by Combining MNDWI and NDVI: A Case Study of Upo Wetland in South Korea)

  • 황영석;엄정섭
    • Spatial Information Research
    • /
    • 제23권6호
    • /
    • pp.31-41
    • /
    • 2015
  • 본 연구는 육화 추세를 추적하는 과정에서 MNDWI (Modified Normalized Difference Water Index)와 NDVI(Normalized Difference Vegetation Index)를 통합한 접근의 실용성을 평가하는 것을 목적으로 한다. 사례 연구지역인 우포늪에 대해 MNDWI는 수분 지수에 민감하여, 수문 객체는 더욱 강조하고 습윤 토양의 변화를 추적하는 등 수문 객체 외의 요소들은 더욱 강하게 배제하는 근거를 제시하였다. NDVI는 식생의 수령, 식생밀도에 대한 정보를 제시하고, 수분객체와 다른 토지 피복 유형(식생, 건물, 도로 등)을 가시적으로 추적하였다. NDVI와 MNDWI의 통합접근을 통해 산출되는 정량적이고 거시적인 정보는 NDVI와 MNDWI의 변화가 육화에 대한 정량적인 근거로 활용될 수 있다는 의미있는 결과를 보여준다. 본 연구는 향후 내륙습지의 육화에 대한 장기적 모니터링과 전반적인 육화 대응방안을 도출하는 과정에서 NDVI, MNDWI 통합접근의 근거가 되는 기초자료를 제공하였다.

Temporal Change in Vertical Distribution of Woody Vegetation on the Flank of Sakurajima Volcano, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Lim, Young-Hyup;Kim, Suk-Woo;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • 제32권3호
    • /
    • pp.270-279
    • /
    • 2016
  • This study explained vertical distributions and growth environments for woody vegetation. It had been degenerated by long-term volcanic activity of Sakurajima; vegetation and thicknesses of tephra layers and forest soils were investigated at 5 sites (250-700 m in altitude) with different altitudes localized at the northwestern-northern flanks of Sakurajima in Kagoshima Prefecture. The results in 2015 were compared with the vertical distribution of woody vegetation in 1963, when the volcanic activity of Sakurajima was relatively moderate. Thus, we investigated temporal changes in the vertical distribution of woody vegetation owing to volcanic activity over about 50 years (1963-2015). We indicated altitude decreased, the number of woody vegetation, number of species, sum of cross-sectional area of tree diameter at breast height, Fisher-Williams's diversity index ${\alpha}$, and forest soil thickness increased. However, these values were found to be degenerated when compared to climax forest values, and succession was incomplete. It seems that because the woody vegetation of the flank was affected by volcanic activity for a long time, exposing them to severe growth environments, areas with lower altitudes became distant from the craters of Sakurajima, thereby weakening the effect of volcanic activity in these areas at lower altitudes. a at the same altitudes over about 50 years (1963-2015) decreased by about 31-72%, and the sum of the cross-sectional area in tree diameter at breast heights decreased by about 14-62%. Thus, comparative growth environments for woody vegetation in 2015 were more severe than that of 1963, with respect to tephra layer thickness. In addition, for vegetation succession in the flank of Sakurajima, vegetation restoration should be promoted through the introduction of artificial woody plants covered by symbiotic microorganisms or organic materials.

식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 - (Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area -)

  • 이한경;이채연;김규랑;조창범
    • 대기
    • /
    • 제29권2호
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

Monitoring of Forest Burnt Area using Multi-temporal Landsat TM and ETM+ Data

  • Lee, Seung-Ho;Kim, Cheol-Min;Cho, Hyun-Kook
    • 대한원격탐사학회지
    • /
    • 제20권1호
    • /
    • pp.13-21
    • /
    • 2004
  • The usefulness of the multi-temporal satellite image to monitoring the vegetation recovery process after forest fire was tested. Using multi-temporal Landsat TM and ETM+data, NDVI and NBR changes over times were analyzed. Both NDVI and NBR values were rapidly decreased after the fire and gradually increased for all forest type and damage class. However, NBR curve showed much clearer tendency of vegetation recovery than NDVI. Both indices yielded the lowest values in severely damaged red pine forest. The results show the vegetation recovery process after forest fire can detect and monitor using multi-temporal Landsat image. NBR was proved to be useful to examine the recovering and development process of the vegetation after fire. In the not damaged forest, however the NDVI shows more potential capability to discriminate the forest types than NBR..

Vegetation community composition and changes of Jinaksan (Mt.) in Korea

  • Seungah Yang;Mira Lee;Badamtsetseg Bazarragchaa;Hyoun Sook Kim;Sang Myong Lee;Joongku Lee
    • 농업과학연구
    • /
    • 제50권2호
    • /
    • pp.165-180
    • /
    • 2023
  • This study investigated 62 nested quadrat plots of Jinaksan to identify community classification and changes of the vegetation by using the phytosocial method and analyzed importance values. Vegetation types were classified into 8 communities: Quercus mongolica community, Q. variableis community, Q. aliena community, Pinus densiflora, Q. acutissima, Zelkova serrata, Carpinis laxiflora, and C. tschonoskii. The significance value was highest in Q. mongolica (62.75) followed by P. densiflora (55.16), Q. variabilis community (25.03), Z. serrata (22.17), Q. aliena (18.30), Prunus serrulata var. pubescens (16.86), C. laxiflora (13.25), Q. acutissima (10.72), C. tschonoskii (10.08), Q. serrata (8.02), Fraxinus sieboldiana (6.93), Acer pseudosieboldianum (6.73), and Styrax obassis (5.73). Quercus mongolica displayed a stable distribution pattern, presenting a reverse J-shaped curve from the diameter at breast height (DBH) analysis, and it was judged that current state would be maintained for a certain period. In addition, P. densiflora is expected to dominate for the time being and Quercus species are expected to gradually decrease.