• Title/Summary/Keyword: Changes in vegetation

Search Result 677, Processing Time 0.022 seconds

Moor Vegetation of Mt. Shinbul in Yangsan (양산 신불산의 습원 식생)

  • Kim, Jong-Won;Han, Seung-Uk
    • The Korean Journal of Ecology
    • /
    • v.28 no.2
    • /
    • pp.85-92
    • /
    • 2005
  • This study emphasizes syntaxonomy and syndynamics of intermediate (Zwischen) moor (area: 14,000 $m^2$) at Mt. Shinbul in Yangsan, southeastern Korean Peninsula. A total of 105 vascular plant species including 26 monitor-species were recorded. Analysis by the $Z\"{u}rich$-Montpellier School's method distinguished eight vegetation units: Eleocharitis-Blyxetum echinospermae ass. nov., Eriocaulon sikokianum-Utricularia racemosa community, Eleocharis wichurai-Molinia japonica community, Platanthero-Molinietum japonicas, Miscanthus sinensis for. purpurascens community, Tripterygium regelii community, Symplocos chinensis-Quercus mongolica community, Symplocos chinensis-Quercus dentata community. PCoA (Principal Coordinates Analysis) shows that vegetation changes and distributional aspects are associated with both moisture condition and sunlight on the ground layer and soil nutrient level (mesotrophic to oligotrophic). Most important to Molinietea japonicas being representative intermediate moor vegetation at the southeasternmost fringe of the Korean Peninsula is the local cooling effect by mountainous cloud and mist zone resulting in shorter and wetter growing season. The Yangsan moor vegetation was compared with earlier descriptions of related Mujechi moor from anthropogenic and natural moor vegetations.

Intercomparison of interannual changes in NDVI from PAL and GIMMS in relation to evapotranspiration over northern Asia

  • Suzuki Rikie;Masuda Kooiti;Dye Dennis
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.162-165
    • /
    • 2004
  • The authors' previous study found an interannual covariability between actual evapotranspiration (ET) and the Normalized Difference Vegetation Index (NDVI) over northern Asia. This result suggested that vegetation controls interannual variation in ET. In this prior study, NDVI data from the Pathfinder AVHRR Land (PAL) dataset were analyzed. However, studies of NDVI interannual change are subject to uncertainty, because NDVI data often contain errors associated with sensor- and atmosphere-related effects. This study is aimed toward reducing this uncertainty by employing NDVI dataset, from the Global Inventory Monitoring and Modeling Studies (GIMMS) group, in addition to PAL. The analysis was carried out for the northern Asia region from 1982 to 2000. 19-year interannual change in PAL-NDVI and GIMMS-NDVI were both compared with interannual change in model-assimilated ET. Although the correlation coefficient between GIMMS-NDVI and ET is slightly less than for PAL-NDVI and ET, for both NDVI datasets the annual maximum correlation with ET occurs in June, which is near the central period of the growing season. A significant positive correlation between GIMMS-NDVI and ET was observed over most of the vegetated land area in June as well as PAL-NDVI and ET. These results reinforce the authors' prior research that indicates the control of interannual change in ET is dominated by interannual change in vegetation activity.

  • PDF

Changes in vegetation and flora of abandoned paddy terraces in responses to drawdown

  • Hong, Mun Gi;Nam, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.219-225
    • /
    • 2019
  • In order to assess the impacts of drawdown for land-use change on a Sphagnum-marsh, we compared the vegetation and flora of the wetland before and after the drawdown with focusing on the population of Sphagnum palustre L. Remarkable changes in the coverage of S. palustre and the major vegetational components of the wetland were observed. The coverage of S. palustre markedly decreased by about 75% (from approx. 247 ㎥ in 2011 to approx. 62 ㎥ in 2015) after the drawdown. Tree species such as Salix spp. extended (from about 70% to about 83% in the total coverage of the wetland), whereas herbaceous species shrunk after the drawdown. Upland-inhabiting species such as obligate plants for uplands (OBU) increased, whereas wetland-inhabiting species such as facultative plants for wetlands (FACW) and OBW decreased in terms of vegetational coverage. The total number of plant species decreased from 70 species to 62 species after the drawdown, including the disappearance of some wetland-inhabiting species from the wetland. We suggest that the attention for further studies on the abandoned paddy terraces (APTs) and effort for the management and conservation of APTs and APT-inhabiting species that are vulnerable to human-induced disturbances have to be paid more.

A Study on the Landforms Near of Mooseom Village, Naeseongcheon (내성천 무섬마을 인근의 하천 지형 특성에 대한 연구)

  • Kim, Jong Yeon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Naeseongcheon is Korea's representative sand stream, and it is one of the regions where the dynamic changes of various river topography developed in the sand bed can be observed. Most of drainage area near of the river channel are formed with Daebo granite, and the granite weathering zone is developed at the surface of hill. Due to the massive input of sediment flux, braided channel reaches are found some of the area. However, the results of the study shows that the alluvial layer is very thin in some reaches. In addition, bedrock or weathered materials, including the Tors are exposed at the channel beds. On the other hand, during the flood, a considerable amount of sediment was introduced, causing the massive sediment to be close to 1m thick. In addition, despite the short distance, large changes in the particle size and sorting of the sediment were observed. Vegetation, on the other hand, has been shown to have a significant effect on the development of the overall channel bed topography, as reported in previous studies. In small floods or low water levels, vegetation's protection role of the surface is predominates, but in large flood conditions, herbaceous loss at the surface of the point bars, accelerating the erosion of surface.

Early Successional Change of Vegetation Composition After Clear Cutting in Pinus densiflora Stands in Southern Gangwon Province (강원도 남부지역에서 소나무림 벌채 후 초기 종조성 변화)

  • Cho, Yong Chan;Kim, Jun Soo;Lee, Chang Seok;Cho, Hyun Je;Lee, Ho Yeong;Bae, Kwan Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.240-245
    • /
    • 2011
  • Vegetation changes were studied for 16 yr in clearcut logged Pinus densiflora forests in the southern Gangwon-do province in Korea by applying chronosequence approach. Ambient temperature and relative humidity, Detrended Correspondence Analysis (DCA), Multiple Responses Permutation Procedure (MRPP), Indicator Species Analysis (ISPAN) were used to examine successional trajectory and compositional changes. After clearcutting, canopy openness was increased abruptly at three folds (1yr 68.3% and R1 23.0%) and then decreased, but relative moisture was slightly decreased (6%) compare to control site. In the result of DCA, right after clear cutting, vegetation composition was developed heterogeneously compared to control sites, and then approached to control sites within 16 years. Based on MRPP, species composition of each developmental stages (1yr, 3yr, 10yr and 16yr) revealed signigicant differences to that of control vegetation (R1, R3, R10 and R16). Indicator species in 1yr and 3yr samples included various woody species rather than herbaceous species, but in 10yr and 16yr, herbaceous were more abundant. Earlier succession of pine forests likely can explain to Initial Floristic Composition (IFC) Model.

A Study on Change of Wild Bird Habitat Characteristics According to Riparian Forest Construction in Yangjae Stream, Seoul (서울 양재천 하천 숲 조성에 의한 야생조류 서식특성 변화 연구)

  • Yun, Suk-Hwan;Han, Bong-Ho;Choi, Jin-Woo;Yun, Ho-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.97-110
    • /
    • 2018
  • The purpose of this study is to provide basic data and evidence for the habitat improvement of wild birds in urban stream by analyzing changes in habitat characteristics of wild birds by riparian forest construction in Yangjae stream in Seoul. In Gangnam-gu, the multi layered riparian forest consisting of landscape trees and shrubs was formed on the slope. In Seocho-gu, the vertical vegetation structure of woody and herbaceous wetland plants was good. In Gangnam-gu, the vegetation area of the slope increased and the vertical stratification structure affected the species diversity of the forest birds. The number of species and individuals of plovers, sandpipers and wagtails decreased due to the impact of bicycle roads and trails. The poor forests on the levee slope in Seocho-gu affected the habitat selection and migration of the forest birds. The willows and amur silver-grasses formed in the riverside have been developed into the riparian forest, thus stabilizing the habitat of water birds by blocking disturbances from the influence of the trails.

Vegetation Classification and Distributional Pattern in Damyang Riverine Wetland (담양하천습지의 식생유형과 분포양상)

  • Ahn, Kyunghwan;Lim, Jeongcheol;Lee, Youlkyung;Choi, Taebong;Lee, Kwangseok;Im, Myoungsoon;Go, Youngho;Suh, Jaehwa;Shin, Youngkyu;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.2
    • /
    • pp.89-102
    • /
    • 2016
  • Damyang riverine wetland was designated as a wetland protected area in 2004; that is located in the Yeongsan river mainstream. Total 30 phytosociological releves at field studies were classified with 22 vegetation types including of 101 species (unidentified 1 species). Legends of actual vegetation map were separated by 6 types; riparian forest, substitute vegetation, synanthropic vegetation, wet meadow vegetation, open water, an area of wetland vegetation is about 35 % ($386,841.86m^2$). Results of this study area as follows. The plant society of Damyang riverine wetland was conjectured that it was formed by rapidly water environment change with installed weir on the upstream of protected area and operating of Damyang dam on top of the basin. Until recently, the terrace land on the river was used to cultivate, but that would be formed fallow vegetation scenery on riverfront caused by no cultivation after designated protected area. Paspalum distichum var. indutum community designated as invasive alien plant by Korea Ministry of Environment was widely developed and Myriophyllum spicatumunrecorded in the country as newly alien species was discovered in the study zone. The plants as lapped over developing environment for Leersia japonica must be occupied habitat of native plant species having similar niche. The various plant society in Damyang riverine wetland should be developed because of environmental changes, disturbances and damages of stream.

Ecological Characteristics and Changes of Quercus mongolica Community in Namsan (Mt.), Seoul (서울시 남산 신갈나무림 생태계 특성과 변화 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.41-63
    • /
    • 2022
  • The purpose of this study is to secure objective and precise data through ecosystem monitoring, to reveal ecological characteristics through comparison and analysis with past survey data, and to accumulate basic data for diagnosing the current situation and predicting changes in the ecosystem. The target site is the 'Quercus mongolica forest on the Buksa-myeon of Namsan', which was designated as an Ecological Landscape Conservation Area (ELCA) of Seoul in July 2006. The research contents are analysis of soil environment change (1986~2016), change of actual vegetation (1978~2016), and change of plant community structure (1994~2016). A total of 8 fixed surveys (400~1,200m2) were established in 1994 and 2000. Analysis items are importance value, species and population, and Shannon's species diversity. The soil environment of Namsan is acidic (pH 4.40 in 2016), which is expected to have a negative impact on tree growth and vegetation structure due to its low capacity for exchangeable cations. Quercus mongolica forest in Namsan is mainly distributed on the northern slopes. The actual vegetation area changed from 49.4% in 1978 → 80.7% in 1986 → 82.4% in 2000 → 88.3% in 2005 → 88.3% in 2009 → 70.3% in 2016. In 2016, the forest decreased by 18% compared to 2009. While there was increased growth of Quercus mongolica in the tree layer from 2009 to 2016, the overall decline in vegetation area was due to logging and fumigation management following the spread of oak wilt in 2012. As for the changes in the plant community structure, Quercus mongolica of the tree layer was damaged by oak wilt, and the potential vegetation that can form the next generation was ambiguous. In the subtree layer, the force of urbanization tree species such as Styrax japonicus, Sorbus alnifolia, and Acer palmatum. was maintained or increased. In the shrub layer, the number of trees and species increased significantly due to the open tree crown, and accordingly, the species diversity of Shannon for woody plants also increased. In Quercus mongolica forest of Namsan, various ecological changes are occurring due to the effects of urban environments such as air pollution and acid rain, the limitation of Quercus mongolica pure forest due to oak wilt, and the introduction of exotic species, thus, it is necessary to establish a management plan through continuous monitoring.

Changes and Prospects of Forests in Korea (우리나라 삼림의 변화와 전망)

  • Lee, Hyohyemi;Cho, Kang-Hyun;Kim, Joon-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.337-341
    • /
    • 2014
  • The changes in the area and standing crop of forests and the understory vegetation structure of various plantations were investigated by literature survey to predict the changes in the structure of forest ecosystems of the Korean Peninsula in the future. The greater part of forest was severely destroyed in 1950's in the Korean Peninsula. The forest standing crop has been dramatically increasing since the nationwide plantation was actively performed in 1970's and 1980's in the Republic of Korea. The area of forest was incessantly decreased at the rate of $5,500ha\;yr^{-1}$. The results of regression analysis on the changes in forest standing crop of the Republic of Korea showed that the forest might approach to the maturity stage in around 2150. It was predicted that the potential natural vegetation of Quercus mongorica, Fraxinus rhynchophyllus, Prunus sargentii, etc. would establish in the plantations of Larix leptolepsis, Pinus koraiensis and Robinia pseudoacacia in the future.

NDVI time series analysis over central China and Mongolia

  • Park, Youn-Young;Lee, Ga-Lam;Yeom, Jong-Min;Lee, Chang-Suk;Han, Kyung-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.224-227
    • /
    • 2008
  • Land cover and its changes, affecting multiple aspects of the environmental system such as energy balance, biogeochemical cycles, hydrological cycles and the climate system, are regarded as critical elements in global change studies. Especially in arid and semiarid regions, the observation of ecosystem that is sensitive to climate change can improve an understanding of the relationships between climate and ecosystem dynamics. The purpose of this research is analyzing the ecosystem surrounding the Gobi desert in North Asia quantitatively as well as qualitatively more concretely. We used Normalized Difference Vegetation Index (NDVI) derived from SPOT-VEGETATION (VGT) sensor during 1999${\sim}$2007. Ecosystem monitoring of this area is necessary because it is a hot spot in global environment change. This study will allow predicting areas, which are prone to the rapid environmental change. Eight classes were classified and compare with MODerate resolution Imaging Spectrometer (MODIS) global land cover. The time-series analysis was carried out for these 8 classes. Class-1 and -2 have least amplitude variation with low NDVI as barren areas, while other vegetated classes increase in May and decrease in October (maximum value occurs in July and August). Although the several classes have the similar features of NDVI time-series, we detected a slight difference of inter-annual variation among these classes.

  • PDF