• Title/Summary/Keyword: Changes in soil property

Search Result 81, Processing Time 0.029 seconds

Changes in Chemical Property of Soil Affected by Termites (Reticulitermes speratus kyushuensis Morimoto) in Korea (국내 흰개미(Reticulitermes speratus kyushuensis Morimoto)에 의한 토양의 화학적 특성 변화)

  • Seong, Se Ha;Kim, Keun Ki;Hong, Chang Oh;Park, Hyean Cheal
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.789-795
    • /
    • 2017
  • Termites (Isoptera) are classified into approximately 3,106 species. In Korea, only one species has been identified, which is Reticulitermes speratus kyushuensis Morimoto. The termite, a social insect, is known to play an important role in nutrient cycling of the ecosystem, although some species of termites are well-known pests attacking wooden structures or any plant materials. However, there is a lack of research about termites in Korea, including aspects such the taxonomy, physiology, and ecology of termites. This study was carried out to provide valuable basic data on the ecological role of termites in an ecosystem in Korea for the future studies. For the experiments, soil and termite samples were randomly collected from Mt. Hwajang located in Jikdong-ri, Eonyang-eup, Ulju-gun, Korea between October 5 and 30, 2015. Analysis results showed that there were no significant differences in soil chemical properties between the soil samples just after air-drying and one year elapsed without any treatment. The treated soil with termites showed significantly higher than the soil without termite treatment. Chemical properties of total nitrogen, organic matter, available phosphate, pH, Calcium(Ca), Potassium(K) and Magnesium(Mg) in soil treated with termites were $1.11{\pm}0.3gkg^{-1}$, $43.3{\pm}12.4gkg^{-1}$, $27.4{\pm}2.9mgkg^{-1}$, $4.56{\pm}0.2$, $0.82{\pm}0.2cmol_ckg^{-1}$, $3.18{\pm}1.4cmol_ckg^{-1}$, $1.73{\pm}1.1cmol_ckg^{-1}$, respectively. The values of soil property of without termite treatment were $0.56{\pm}0.1gkg^{-1}$, $30.5{\pm}3.1gkg^{-1}$, $24.0{\pm}4.7 mgkg^{-1}$, $4.09{\pm}0.1$, $0.71{\pm}0.2cmol_ckg^{-1}$, $2.88{\pm}1.5cmol_ckg^{-1}$, $1.30{\pm}0.7cmol_ckg^{-1}$, respectively. These results suggest that inhabitation of termites could improve soil chemical properties in an ecosystem.

Chemical Properties of Paddy Soils and Factors Affecting Their Change in Jeonnam Province

  • Kim, Sun-Kook;Kim, Hyeon-Ji;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.492-498
    • /
    • 2015
  • The long-term changes in the soil properties are closely related to the policy direction and the national program for the soil management. In this study, chemical properties of paddy soils in Jeonnam province were investigated at four-year interval since 1999 and the factors affecting change of chemical properties were analyzed in relation to the soil management policies. Chemical fertilizers supplied to Jeonnam province reduced by 57% in 2013 as compared with 1999, and the ratio of Jeonnam province to the national fertilizer supply gradually decreased to 14.1% in 2013 from 17.6% in 1999 due to national policies to reduce use of chemical fertilizers in the 2000s. In the chemical analysis of paddy soils in Jeonnam province, pH value tended to increase gradually within the optimal range. Available phosphate and exchangeable potassium content were always higher than the optimal range and showed no significant difference since 1999. Organic matter, exchangeable calcium and available silicate content were found to be lower than average content in the whole country as well optimal range for rice cultivation in 1999, but were higher than average content in the whole country and optimal range in 2011 because of faster rate of increase in Jeonnam province than the other region since the mid-2000s. The cause of increase in organic matter, exchangeable calcium and available silicate contents is considered to be the increased use of green manure crops and by-products fertilizer as an alternatives for conventional application of chemical fertilizers and soil amendment such as silicate fertilizer for agronomic control of the disease and insect pest in rice cultivation of environmentally-friendly agriculture.

Ultimate Uplift Capacity of Permanent Anchor Embedded in Weathered Rock (풍화암에 근입된 영구 앵커의 극한인발력)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Jin-Hwang
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.195-203
    • /
    • 2001
  • The purpose of this study is to estimate ultimate uplift capacity of permanent anchor which was cast into weathered rock. The ultimate uplift capacity was estimated from the load-displacement curve of four different anchors which have different bond length. The creep test was performed for 15minutes under the maximum load of each step in order to understand the load-transfer property of permanent anchor and to decide which anchor to choose. The destruction range of soil due to the changes in load was estimated by installing dial gauge on the ground which was cast into the weathered rock. Ultimately, the study on the behavior of the anchor case into the weathered rock was performed by comparing and analyzing the estimated result of the UUC obtained by the full scale pull out test in the field with the exsting theoretical and practical results of soil and rock anchor.

  • PDF

Improvement of Comfortability and Ability on Nonwoven Fabric for Disposable Work Clothing Using Yellow Soil Printing (황토 날염을 이용한 일회용 작업복 소재의 쾌적성 및 기능성 향상에 관한 연구)

  • Jung, Myung-Hee;Park, Soon-Ja;Koshiba, Tomoko;Tamura, Teruko;Shin, Jung-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.15 no.2 s.67
    • /
    • pp.276-283
    • /
    • 2007
  • The purpose of this study were to investigate characteristic changes on nonwoven fabric for disposable work clothes by the yellow soil printing. It separate grind yellow soil as two different size of particles $45\sim52{\mu}m$ and $53\sim65{\mu}m$ for hand screen printing on three kind of nonwoven fabrics. To examine the effect of yellow soil printing on nonwoven fabric were to observe, dyeability by using spectrophotometer, moisture regain by oven method, air permeability, anion property and antibacterial activity. The results were as follows: When yellow soil concentration increased from 5 to 10%, K/S value also increased from 1.05 to 1.88. When yellow soil concentration increased, moisture regain also increased. In same concentration, moisture regain occurred higher as particle of small size. Air permeability decreased when the charcoal printing concentration increased. Anion occurrence appeared $140\sim160ion/cc$ from three different kinds of nonwoven fabrics in 3% and 9% yellow soil concentration. Therefore, occurred anion ineffectively. In concentration of 3%, rate of deodorization measured as 89%, 83% and 87%, and 9% concentration caused 96%, 86% and 93% of high deodorization. Antibacterial activity examination in nonfinished nonwoven fabric resulted range of 60%, however, 3% and 9% concentration finished nonwoven fabric resulted 99.9% of excellent antibacterial activity Surface temperature increased $1.5\sim2^{\circ}C$ by yellow soil finishing.

  • PDF

Changes of Physico-chemical Soil Properties, Major Soil Nutrient Contents, and Weed Vegetation in Paddy Fields during Fallow Period (휴경답에서의 토양의 이화확적 특성, 주요 영양분 및 잡초종의 변화)

  • Han, Sung-Uk;Chung, Gap-Chae;Chon, Sang-Uk;Lee, Hee-Jae;Guh, Ja-Ock
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.211-214
    • /
    • 1998
  • Changes in physico-chemical properties and major nutrient contents were investigated in the soil of paddy fields during fallow period. Weed vegetation change in the fallow paddy fields was also examined. As the fallow period became longer, organic matter content in the paddy soil has gradually increased. Soil pH of the paddy fields has not changed until three years of fallow period and thereafter slightly increased. Cation exchange capacity of the paddy soil, and exchangeable N, K, Ca and Mg contents in the soil tended to decrease until three years of fallow period and then increase with the prolonged fallow period. As the fallow period became longer, available $P_2O_5$ content in the paddy soil has continuously decreased. Available $SiO_2$ content in the paddy soil has not changed until three years of fallow period and thereafter increased. The vegetation in the fallow paddy fields have mostly been occupied by the weeds of the Gramineae, Cyperaceae, and Compositae. As the fallow period became longer, the weeds of the Polygonaceae and Juncaceae have increased, whereas the weeds of the Leguminosae, Commelinaceae, Pontederiaceae, and Onagraceae have gradually disappeared. However, the weeds of the Gramineae and Cyperaceae have always been dominant in the paddy fields during the fallow paddy period.

  • PDF

Compositional Changes of Kochujang During Fermentation in Onggis with Different Physical Properties (물리적 특성이 다른 옹기에서의 고추장 발효 중 성분 변화)

  • Chung, Sun-Kyung;Lee, Kwang-Soo;Lee, Dong-Sun;Lee, Se-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.2
    • /
    • pp.51-58
    • /
    • 2007
  • This research investigated the effect of different onggi containers (Korean earthenware) on the ripening of kochujang (Korean hot pepper paste). The physical characteristics of 'onggi', were evaluated as function of manufacturing variables such as raw material soils (onggi-specific soil, red brown soil, and fine powdered soil) and galzing treatments. The physical properties were then related to the compositional quality changes of the kochujang fermented at $30^{\circ}C$ for 4 months. The porosity of the onggi containers seems to be increased by the content of finer raw soil rather than the chemical component of soil (amount of CaO, MgO, $K_2O$ and $Na_2O$, acting as melting aid in the firing). Natural glaze was measured to contain higher contents of CaO, MgO, $K_2O$ and $Na_2O$ than the other soils, which is desirable property for the fired onggi. The glazed surface showed higher far-infrared radiation emissivity than the non-glazed part. The kochujang fermented in P0-BG (the glazed onggi from 100 % onggi soil) attained higher concentration of reducing sugar, amino nitrogen and nucleotides compared to those in the other onggis. All of these changes of kochujang in P0-BG resulted in significantly better sensory quality than the other treatments.

  • PDF

Use of Protease Produced by Bacillus sp. SJ-121 for Improvement of Dyeing Quality in Wool and Silk

  • Kim Soo-Jin;Cha Min-Kyoung;Oh Eun Taex;Kang Sang-Mo;So Jae-Seong;Kwon Yoon-Jung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.186-191
    • /
    • 2005
  • In this study, a microorganism-produced protease was used to improve the quality of fabrics. First, the protease-producing bacteria were isolated from soils, and one of them was selected and identified as Bacillus sp. SJ-121. The optimal medium composition for its growth and protease production was determined to be as follows: glucose 1g/L, soybean meal 0.5g/L, soy peptone 0.5, $K_2HPO_4\;0.2,\;MgSO_4\cdot7H_2O\; 0.002,\;NaCl\;0.002,\;and\;Na_2CO_3g/L$. Also, the optimal temperature for the production of the protease by Bacillus sp. SJ-121 was about $40^{\circ}C$ at pH 7. The wool and silk were treated with the protease from Bacillus sp. SJ-121. Following the protease treatment, changes in the surface of a single yarn of the fabrics were observed by both an optical microscope and a scanning electron microscope (SEM). Changes in the K/S value of the wool and silk were measured by spectrophotometric analysis, in order to determine the amount of dye uptake in the fabrics. We also performed a tensile strength examination in order to determine the degree and nature of mechanical changes in single yarns of the wool and silk fabrics. By increasing the protease treatment time to 48 h, the dyeing characteristics of the fabrics were enhanced, and the surfaces of the single yarns of the fabrics became smoother, due to the removal of soil and scale in them. However, no mechanical changes were detected in the fabrics. Therefore, we suggest that proper treatment of the protease produced by Bacillus sp. can improve the quality of silk and wool.

Engineering properties of expansive soil treated with polypropylene fibers

  • Ali, Muhammad;Aziz, Mubashir;Hamza, Muhammad;Madni, Muhammad Faizan
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Expansive soils are renowned for their swelling-shrinkage property and these volumetric changes resultantly cause huge damage to civil infrastructures. Likewise, subgrades consisting of expansive soils instigate serviceability failures in pavements across various regions of Pakistan and worldwide. This study presents the use of polypropylene fibers to improve the engineering properties of a local swelling soil. The moisture-density relationship, unconfined compressive strength (UCS) and elastic modulus (E50), California bearing ratio (CBR) and one-dimensional consolidation behavior of the soil treated with 0, 0.2, 0.4, 0.6 and 0.8% fibers have been investigated in this study. It is found that the maximum dry density of reinforced soil slightly decreased by 2.8% due to replacement of heavier soil particles by light-weight fibers and the optimum moisture content remained almost unaffected due to non-absorbent nature of the fibers. A significant improvement has been observed in UCS (an increase of 279%), E50 (an increase of 113.6%) and CBR value (an increase of 94.4% under unsoaked and an increase of 55.6% under soaked conditions) of the soil reinforced with 0.4% fibers, thereby providing a better quality subgrade for the construction of pavements on such soils. Free swell and swell pressure of the soil also significantly reduced (94.4% and 87.9%, respectively) with the addition of 0.8% fibers and eventually converting the medium swelling soil to a low swelling class. Similarly, the compression and rebound indices also reduced by 69.9% and 88%, respectively with fiber inclusion of 0.8%. From the experimental evaluations, it emerges that polypropylene fiber has great potential as a low cost and sustainable stabilizing material for widespread swelling soils.

Changes in Rice Yield and Soil Properties under Continued Application of Chemical Fertilizer for 50 Years in Paddy Soil (화학비료 50년 연용에 따른 벼수량과 논토양 특성 변화)

  • Yeon, Byeong-Yeol;Kwak, Han-Kang;Song, Yo-Seong;Jun, Hee-Joong;Kim, Chong-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.482-487
    • /
    • 2007
  • This study was conducted to investigate the effect of long-term continuous application of fertilizers for rice cultivation. Changes of physical and chemical properties of paddy soil and the rice yield by continuous application of NPK fertilizers, ammonium sulphate, and urea over fifty years, from 1954 to 2003, were investigated. The rice yield index of each treatment were 100 of NPK plots, 84 of ammonium sulphate plots, 81 of urea plots, and 62 of no fertilizer plots. The variance of yield was large according to the quality of irrigation water. Nutrient uptakes by rice plants in ammonium sulphate and urea plots were significantly smaller than those in NPK plots; 86 and 75% in T-N, 79 and 82% in $P_2O_5$, 64 and 58% in $K_2O$, and 94 and 90% in $SiO_2$, respectively. Bulk density of soil in NPK plots significantly decreased compared to those in no fertilizer, ammonium sulphate, and urea plots, whereas CEC in NPK plots increased compared to other plots. Soil pHs of all plots were higher than that before experiment which was 5.2; 6.0 in no fertilizer, 5.9 in urea and NPK, and 5.4 in ammonium sulphate plots. The available phosphate in soil increased by $2.5mg\;kg^{-1}\;yr^{-1}$ when $70kg\;ha^{-1}$ of P fertilizer applied for rice cultivation, and decreased by $1.8mg\;kg^{-1}\;yr^{-1}$ when no P fertilizer applied.

Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls

  • Li, Fulin;Ma, Tianran;Yang, Yugui
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-205
    • /
    • 2021
  • Time effect on the deformation and strength characteristics of geogrid reinforced sand retaining wall has become an important issue in geotechnical and transportation engineering. Three physical model tests on geogrid reinforced sand retaining walls performed under various loading conditions were simulated to study their rate-dependent behaviors, using the presented nonlinear finite element method (FEM) analysis procedure. This FEM was based on the dynamic relaxation method and return mapping scheme, in which the combined effects of the rate-dependent behaviors of both the backfill soil and the geosynthetic reinforcement have been included. The rate-dependent behaviors of sands and geogrids should be attributed to the viscous property of materials, which can be described by the unified three-component elasto-viscoplastic constitutive model. By comparing the FEM simulations and the test results, it can be found that the present FEM was able to be successfully extended to the boundary value problems of geosynthetic reinforced soil retaining walls. The deformation and strength characteristics of the geogrid reinforced sand retaining walls can be well reproduced. Loading rate effect, the trends of jump in footing pressure upon the step-changes in the loading rate, occurred not only on sands and geogrids but also on geogrid reinforced sands retaining walls. The lateral earth pressure distributions against the back of retaining wall, the local tensile force in the geogrid arranged in the retaining wall and the local stresses beneath the footing under various loading conditions can also be predicted well in the FEM simulations.