• Title/Summary/Keyword: Change of scale formula

Search Result 36, Processing Time 0.019 seconds

Theoretical Development of Compaction Density (다짐밀도의 이론적 전개)

  • Huh, Jung-Do;Kim, Han-Yong;Nam, Young-Kug
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.147-156
    • /
    • 2000
  • Compaction is known to critically affect pavement performance. Due to its importance, a theoretical modelling of compacted density in the term of number of roller coverages is attempted by assuming compaction process essentially identical to pavement rutting. Excellent data fittings by the developed equation may prove the validation of assumptions made as well as justification of its use. According to the derived equation, a plot of density difference with respect to number of roller coverages in the logarithmic scale Produces a linear relationship. However, this linearity is turned out to be deviated by cooling effect, change of amplitude and frequency. Investigation of these three factors proposes a new generalized compaction density equation, which shows a promising future. By applying this general formula, the equations for the number of roller coverages required and the final compaction density obtained for a particular compaction project is derived first time in compaction research.

  • PDF

Cost Estimating in Early Stage Using Parametric Method for Apartment Construction Projects (파라메트릭 방법(Parametric Method)을 이용한 사업초기 단계의 공사비 예측 방법)

  • Seong, Ki-Hoon;Park, Mun-Seo;Lee, Hyun-Su;Ji, Sae-Hyun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.207-211
    • /
    • 2008
  • The importance of cost management in early stage has been increasing due to market change and competition severence in construction industry. Because the adjustable budget is only 20% after finishing design stage, the critical decision is made in the early stage. However, in the early stage, the design information is not enough to make crucial decision. Therefore, this research suggests the predicting method on the purpose of accurate cost estimation. The parametric estimation is appropriate for the early stage, especially it has the strength of rapidity in cost estimation. This research analyzes 84 actual data of public apartment on the scale of $11{\sim}15$ stories, and then performs the correlation analysis between cost and influence factors. After eliminating the parameters which causes the problem of multicollinearity, this research derived the formula through the multi-regression analysis.

  • PDF

Effects of the water level reduction and the flow distribution according to change of the side weir location in detention reservoir (홍수조절지 횡월류위어의 위치 변화에 따른 수위 저감 및 유량 분담 효과)

  • Seong, Hoje;Park, Inhwan;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.555-564
    • /
    • 2018
  • The detention reservoir is a hydraulic structure that constructs a levee on the inland of river and sets up side weir in a section of the levee, and this facility stores a part of the flood volume in case of a flood event over a certain scale. In order to optimize the operation of detention reservoir, it is necessary to review the linkage with existing facilities in the river. In this study, the effect of water level reduction and the flow distribution was analyzed according to the location of the side weir in the detention reservoir considering the run-of-the-river gate. Two radial gates were installed in the experimental channel, and the water level in channel and the overflow of weir were measured by moving the location of the side weir upstream from the gate. As a results of experiment, it was confirmed that the water level reduction is more remarkable as the location of the side weir was closer to the gate, and the effect of flow distribution is not greatly changed. When two or more side weirs were operated, it is confirmed that the sufficient storage space was secured and the water level reduction effect with the location of the side weir is not large. In addition, the water level reduction rate according to the location of the side weir was estimated by empirical formula and it is provided as basic data that can be used in the planning of the detention reservoir.

Analysis of Effect of Ditch Restoration on Soil Loss Reduction in Highland Agricultural Fields (고랭지밭의 구거복원에 따른 토양유실저감 효과분석)

  • Sung, Yunsoo;Kim, Dong Jin;Lee, Suin;Ryu, Jichul;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.385-391
    • /
    • 2020
  • Soil loss is a serious problem frequently caused by local torrential rainfalls due to climate change. In particular, soil loss is occurring in agricultural areas rather than urban areas, and many pollutants are introduced into rivers, causing environmental problems. To reduce soil loss, the Ministry of Environment has designated and managed non-point source management areas. The Jaun-district in Hongcheon-gun, which was designed as a non-point pollution source management area in Gangwon-do, is located in the upper stream of Soyang Lake. Most of the agricultural fields are composed of highland agriculture fields. The highland agricultural fields in the Jaun-district are also composed of large-scale farming areas, and the ditches located near the agricultural fields have been illegally used for farmland. Therefore, the local government in Hongcheon-gun is conducting a project to restore the ditches occupied by agricultural fields. However, an analysis of the amount of soil loss that can be reduced by the restoration of the ditches has not been conducted yet. Thus, the purpose of this study was to analyze the effect of reducing the soil loss from the restoration of the ditches used as agricultural fields in the Jaun-district. The SATEEC L Module was used to analyze the reduction in soil loss by ditch restoration. The SATEEC L Module was constructed to estimate the LS factor using Moore and Burch's method after calculating the slope length using the digital elevation model and the maximum allowable slope length. The LS factor and the USLE formula were used to estimate the amount of soil loss that could be reduced by ditch restoration. The analysis showed that the ditch restoration could reduce about 16.6% of the soil loss in the Jaun-district. The results of this study will contribute to the study of methods to reduce soil loss in non-point pollution management areas.

A Study on Operating Condition of Test-Bed Plant using Membrane filtration of D Water Treatment Plant in Gwang-Ju (D정수장 정밀여과막 실증플랜트의 최적 운전조건 연구)

  • Yang, Hyung-Jae;Yi, Seung-Hoon;Moon, Kyung-Ran
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.155-163
    • /
    • 2017
  • Membrane filtration has become more popular in drinking water treatment recently, since the filtration can control not only particulate matters but also pathogenic microorganisms such as giardia and cryptosporidium very effectively. Pilot-scale ($120m^3/d$ of treatment capacity) and test-bed ($25,000m^3/d$ of treatment capacity) microfiltration experiments were conducted to find optimum operating mode and the critical flux. Optimum operating mode of pilot-test was assessed as inflow 1.0 min, filtration 36.5 min, air backwash 0.9 min, backwash 1.0 min and outflow 1.0 min with 50 LMH ($L/min{\cdot}m3^$) of critical flux. Critical Flux was calculated to be $50L/m^2-h$ (within TMP 0.5 bar) based on the increase formula of the transmembrane pressure difference according to the change of time at Flux 20, 40, 56 and 62 LMH in pilot operation. Chemical cleaning was first acid washed twice, and alkali washing was performed secondarily, and a recovery rate of 95% was obtained in the test-bed plant. The results of operating under these appropriate conditions are as follows. Turbidity of treated water were 0.028, 0.024, 0.026 and 0.028 NTU in spring, summer, autumn and winter time, respectively. Microfiltration has superior treatment capability and performance characteristics in removing suspended solids and colloidal materials, which are the main cause of turbidity and important carrier of metal elements, and it has shown great potential in being an economically substitute to traditional processes (sand filtration).

A Study on the Installation of Groyne using Critical Movement Velocity and Limiting Tractive Force (이동한계유속과 한계소류력을 활용한 수제 설치에 관한 연구)

  • Kim, Yeong Sik;Park, Shang Ho;An, Ik Tae;Choo, Yeon Moon
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.194-199
    • /
    • 2020
  • Unlike in the past, the world is facing water shortages due to climate change and difficulties in simultaneously managing the risks of flooding. The Four Major Rivers project was carried out with the aim of realizing a powerful nation of water by managing water resources and fostering the water industry, and the construction period was relatively short compared to the unprecedented scale. Therefore, the prediction and analysis of how the river environment changes after the Four Major Rivers Project is insufficient. Currently, part of the construction section of the Four Major Rivers Project is caused by repeated erosion and sedimentation due to the effects of sandification caused by large dredging and flood-time reservoirs, and the head erosion of the tributaries occurs. In order to solve these problems, the riverbed maintenance work was installed, but it resulted in erosion of both sides of the river and the development of new approaches and techniques to keep the river bed stable, such as erosion and excessive sedimentation, is required. The water agent plays a role of securing a certain depth of water for the main stream by concentrating the flow so much in the center and preventing levee erosion by controlling the flow direction and flow velocity. In addition, Groyne products provide various ecological environments by forming a natural form of riverbeds by inducing local erosion and deposition in addition to the protection functions of the river bank and embankment. Therefore, after reviewing the method of determining the shape of the Groyne structure currently in use by utilizing the mobile limit flow rate and marginal reflux force, a new Critical Movement Velocity(${\bar{U}}_d$) and a new resistance coefficient formula considering the mathematical factors applicable to the actual domestic stream were developed and the measures applicable to Groyne installation were proposed.