• Title/Summary/Keyword: Change of nitrogen and organic matter

Search Result 109, Processing Time 0.033 seconds

Chemical Budgets in Intensive Carp Ponds

  • Peng Lei;Oh Sung-Yong;Jo Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.4
    • /
    • pp.194-202
    • /
    • 2003
  • Budgets for water, nitrogen, and chemical oxygen demand (COD) were determined in two 0.012 ha earthy-bottom ponds stocked with Israeli strain common carp at an initial stocking density of $20\;fish/m^3$. Total ammonia nitrogen (TAN) concentrations increased continuously but later decreased in pond A as a consequence of high nitrification. COD concentrations increased during the experimental period due to the accumulation of feed input. Nutrient budgets showed that feed represented $94-95\%$ of nitrogen input and about 99% of organic matter input. Fish harvest accounted for $40\%$ of nitrogen and organic matter input. Seepage and water exchange removed $15-17\%$ of nitrogen input but only $1-2\%$ of organic matter. Draining of the ponds removed $20-26\%$ of input nitrogen, mostly in inorganic forms, but removed only minus organic matter. Fish and water column respiration accounted for $39\%$ of organic matter input, and benthic respiration accounted for $7-12\%$ of organic matter input. No significant change of nitrogen and organic matter in both pond bottoms were found during the three-month growth period. The unrecovered input nitrogen, about $6.3-13\%$, was lost through denitrification and ammonia volatilization. On a dry matter basis, fish growth removed $31\%$ of total feed input and left $69\%$ as metabolic wastes.

Effect of ammonium nitrogen in anaerobic biofilter using live-stock-wastewater (축산폐수의 혐기성 고정법에 있어서 암모니아성 질소의 영향)

  • Eom, Tae-Kyu;Lim, Jung-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.43-53
    • /
    • 1997
  • In this research, the synthetic livestock wastewater was prepared to study the characteristics of organic matter removal, the change of VFA production, and the amount of gas production with respect to the change of ammonium nitrogen concentration in the waste using anaerobic fixed bed process, which is an anaerobic biofilm process. The HRT and operation temperature were 1 day and $35{\pm}1^{\circ}C$, respectively. Also, the characteristics of organic matter removal and the inhibitory effect on microorganism in the anaerobic process were studied on the organic loading and ammonium nitrogen concentration. The results obtained were as follows: For COD loading of $10kg/m^3$-day and five levels of ammonium nitrogen concentration ranging from 1,000 to 5,000 mg/L, organic removal efficiencies were about 81, 74, 67, 58, and 51%, and gas productions were 3,860, 3,520, 3,240, 3,020, and 2,790 ml/l-day, respectively. Average methane contents in the gas produced on COD loading of $10kg/m^3$-day was about 76%. Throughout the whole period of experiment, remaining VFA (as COD base) in the effluent was over 90% of remaining COD. This result indicated the inhibitory effect of high concentration of ammonium nitrogen through the facts that accumulated VFA was almost COD and organic removal efficiency decreased also with the increase of ammonium nitrogen. Especially, that implys which high concentration of ammonium nitrogen not only inhibits methane forming bacteria, but also acid forming bacteria.

  • PDF

On the Decay Rate of Soil Organic Matter and Changes of Soil Microbial populaiton (토양유기물의 분해속도와 Microbial populaiton의 소장에 관한 연구)

  • 김춘민
    • Journal of Plant Biology
    • /
    • v.10 no.1_2
    • /
    • pp.21-30
    • /
    • 1967
  • The aim of present study is to elucidate the relationship between decay rate of soil organic matter, and the change of soil microbial population under the oak and pine forest soils in Kwang-nung plantation stand. The results obtained are as follows: 1) The correlation coefficient between decay rate and the soil bacteria is 0.84 and fungi 0.93. 2) The distribution of soil microbial population is higher in both F horizon of the oak forest soil, and F and H horizon of the pine forest soil. However, the number of soil microorganisms decreases with the depth in each forest soil. 3) The population of soil microbes is related to moisture content, total nitrogen, available phosphorus, and exchangeable calcium, except organic carbon in fungi. 4) The soil organic matter has been mainly decomposed by fungi, and the size of its population are governed by the factors such as moisture content, organic carbon, total nitrogen, available phosphorus, and exchangeable calcium.

  • PDF

Effects of organic matter sources on nitrogen supply potential in arable land (농경지에서 유기물 시용에 의한 질소 공급 효과)

  • Lee, Ye-Jin;Yun, Hong-Bae;Song, Yo-Sung;Lee, Chang-Hoon;Sung, Jwa-Kyung;Ha, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.431-437
    • /
    • 2015
  • Recently, assessment of nitrogen balance has been required for environmental agriculture. Nutrient management using organic matters in farmlands has been strongly required as a means of extending resource-cycling agriculture and reduction of nitrogen balance. Organic matters-derived nutrients and soil-available nitrogen should be necessarily considered to manage nutrient balance in soil-plant system. In this study, we reviewed the amount of N supply according to types of organic matter such as livestock compost and green manure in arable land. In case of applied livestock compost in soil, nitrogen mineralization was influenced by nitrogen amount of livestock manure and mixed materials. And nitrogen mineralization of green manure in arable land was influenced by types of crop and return period of green manure because of change of C/N ratio. Also, nitrogen supply by organic matter in arable land can be changed by environmental factors such as temperature, moisture in soil. Therefore, nitrogen supply according to C/N ratio of organic matter and analysis method for estimation of soil nitrogen supply availability should be evaluated to set up the nutrient management model.

Change of Organic Matter Decomposition Rates and Greenhouse Gas Emission of the Soil of Gyeongan Stream under Different Environmental Conditions (환경 조건 차이에 의한 경안천 토양의 유기물 분해속도와 온실가스 발생 변화)

  • Choi, In Young;Kang, Min Kyoung;Choi, Jung Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.75-85
    • /
    • 2013
  • This study investigated the effects of organic matter decomposition on the emission of greenhouse gas under the influence of environmental factors such as change of climate condition ($CO_2$ concentration and temperature), vegetation, and N concentration in the soil of Gyeongan stream in the laboratory. The experimental results showed that organic matter decomposition and $CH_4$, $CO_2$ flux were influenced by changes of complex environmental conditions. Organic matter decomposition rate was affected by changes of climate condition with N concentration and climate condition with vegetation. Through the results of $CH_4$, $CO_2$ flux, $CH_4$ flux was affected by change of climate condition with N concentration and climate condition with vegetation and affected by the presence of vegetation and N concentration. $CO_2$ flux was affected by change of climate condition with vegetation and vegetation with N concentration. According to results of the study, change of (1) climate conditions, (2) vegetation, and (3) N concentration, each have an effect on organic decomposition rate, that also influences emission of greenhouse gas. It is known that climate change is related to an increase in greenhouse gasses in the atmosphere However, additional study will be needed whether vegetation could remove positive effect of nitrogen addition in soil since this study shows opposite results of organic matter decomposition in response to the nitrogen addition.

Seasonal Changes of Microflora in Paddy Soil with Long-term Application of Organic Matter (유기물(有機物) 연용답토양(連用畓土壤)에 있어서 미생물상(微生物相)의 계절적(季節的) 변화(變化))

  • Lee, Sang-Bok;Choi, Yoon-Hee;Lee, Kyung-Bo;Yoo, Chul-Hyun;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 1995
  • This experiment was carried out to investigate the effects on the seasonal population change of microflora of long-term application of organic matters in Fluvio-Alluvial plain of Jeonbug series. As organic matters, rice straw and compost of 5 and 10ton/ha, which were applied with the different nitrogen fertilizer level of 0, 150kg/ha into the soil 15cm deep, respectively. A number of total aerobic bacteria were gradually increased from just after water-logging before rice transplanting to pancle formations stage, afterthat decreased at harvest. The other side, a number of actinomycetes, fungi and cellulose-decomposers were slightly fluctuated until panicle formation stage and increased at havesting stage. In general, microorganism numbers were higher in organic matter with long-term nitrogen fertilizer applied plot, while cellulose-decomposers were higher in only organic matter applied plot. The microorganisms of ammonia-oxidizing, nitrate-reducing and nitrite-oxidizing, and denitrifying bacteria showed the maximum number at harvest stage, at panicle formation stage and at early tillering stage, respectively, while that of ammonifying bacteria were variable if nitrogen fertilizer applied or not at the respective periods in nitrogen cycle under water-logging. These bacteria were numerous in the organic matter plots combined with nitrogen fertilizer, especially, denitrifying bacteria in rice straw, others no difference.

  • PDF

Retention properties of organic matters and nutrients in wetland soils and coastal sediments (습지토양 및 연안퇴적물의 유기물질 및 영양물질 보유 특성)

  • Park, Soyoung;Yi, Yong Min;Yoon, Han-Sam;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.265-275
    • /
    • 2012
  • As climate change is becoming a growing concern and the importance of water management is increasing, the retention of carbon and nutrients in wetland soils including inland and coastal area has become important. In this study, retention characteristics of organic matter and nutrients of coastal sediment and soils in different types of wetlands such as constructed wetland, natural (inland marsh, estuary, tidal flat) wetlands were investigated. A correlation analysis was also performed to understand the relationship among organic matter properties, nutrient concentrations and soil texture of wetland soils. The degree of retention of organic matter and nitrogen in wetland soils varied with the wetland type. Inland wetlands retain more nitrogen than estuary or coastal wetlands, and natural wetlands retain more organic matter and nitrogen than constructed ones. Coastal sediments in a bay area where seawater circulation is restricted have more nutrients than those in estuary or tidal flats where seawater circulates well. The results showed that the sediment chemical oxygen demand has a high correlation with the total organic carbon and the total nitrogen in the studied area.

Effect of Soil Respiration on Light Fraction-C and N Availability in Soil Applied with Organic Matter

  • Ko, Byong-Gu;Lee, Chang-Hoon;Kim, Myung-Sook;Kim, Gun-Yeob;Park, Seong-Jin;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • Soil respiration has been recognized as a key factor of the change of organic matter and fertility due to the carbon and nitrogen mineralization. In this study, we evaluated the effect of soil respiration on the light fraction-C and inorganic N content depending on temperature in soil applied with organic matter. Soil respiration was calculated by using total $CO_2$ flux released from soil applied with $2Mg\;ha^{-1}$ of rice straw compost and rye for 8 weeks incubation at 15, 25, $35^{\circ}C$ under incubation test. After incubation test, light fraction and inorganic N content were investigated. Rye application dramatically increased soil respiration with increasing temperature. $Q_{10}$ value of rye application was 1.69, which was higher 27% than that of rice straw compost application. Light-C and $NO_3-N$ contents were negatively correlated to soil respiration. Light-C in rye application more decreased than that in rice straw compost with temperature levels. These results indicate that temperature sensitivity of soil respiration could affect soil organic mater content and N availability in soil due to carbon availability. Also, light fraction would be useful indicator to evaluate decomposition rate of organic matter in soil under a short-term test.

Distribution Characteristic and Assessment of Soil Organic Matter, Nitrogen and Phosphorus in Soils of New born River Mouth Wetlands

  • Chen, Weifeng;Ann, Seoung-Won;Shi, Yanxi ;Mi, Qinhua
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.111-117
    • /
    • 2003
  • This paper investigates preliminarily spatial distribution soil organic matter (SOM), nitrogen (N) and phosphorus (P) and its environmental influence in wetland soil of different vegetation landscape in the Yellow River Mouth. The result shows the SOM and total nitrogen (TN), efficient N, efficient P in top layer soils of different vegetation district have significantly different content, The SOM is shown as Calamagrostis epigeios wetlands > Phragmites cmmunis wetlands > Tamarix chinensi wetlands above tidal > Suaeda salsa wetlands in high tidal > Tamarix chinensi wetlands in high tidal > tidal flats, the arrange of the TN and efficient N content is the same except that the content in Suaeda salsa wetlands in high tidal is heavier than Tamarix chinensi wetlands in high tidal. In different vegetation landscape wetland types the vertical change of soil nutrients are obvious except for p, gradually decrease from the upper to the lower. This case reflects the function of the vegetation on the wetland development of soil and proves the wetland soil has the characteristic of new born and bad degree of development. SOM, TN, efficient N and efficient P content in wetland soils have significantly positive correlation, but TP have no correlation with them but efficient p. The contents of TN in wetland soils range from 58~1480 mg/kg, total average content 408 mg/kg, average content of above 30 cm is 625 mg/kg. The range of TP content in the soil is 372~1042 mg/kg, total average is 569 mg/kg, average content of above 20 cm is 611 mg/kg. According the P it occurs mainly as calcium phosphates, and the validity is lower, therefore, N and P in the new born wetlands cannot produce serious impact on the environments at present.

Variation of organic matter and rice yield in in continuous forage use of barley and rice straw

  • Ku, Bon-Il;Hwang, Jae-Bok;Choi, In-Bea;Bae, Hui-Su;Kim, Hag-Sin;Park, Tae-Seon;Park, Hong-Kyu;Lee, Geon-Hwi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.184-184
    • /
    • 2017
  • Organic matter is very important and essential factor to maintain productivity of paddy field. But as meat consumption and the demand of grain increase, the demand of forage also increased gradually in Korea. So the amount of organic matter in paddy field have been declined gradually by the reduction of return of rice straw for the forage use for cattle. There is not enough alternative resources for forage, we guess this trend of organic matter decline in paddy field would continue for the time being in Korea. So this study was performed to confirm the variation of organic matter and change of rice yield to select suitable rice cultivars which yield reduction is small in condition of organic matter decrease in paddy field. To confirm the change of rice growth and yield in condition of organic matter decrease in paddy field, we transplanted 10 rice cultivars which yield reduction are small in low fertilizer condition. We transplanted it Buan where double cropping of winter barley continues several years on June 10. Planting density were $70plants/3.3m^2$ Fertilizer amount was $N-P_2O_5-K_2O=9-4.5-5.7kg/10a$ and fertilizer split application of nitrogen was basal-tillering stage-panicle initiation = 50-20-30%. And in the other cultivation management, we observed rice standard culture of NICS. In paddy field where withdraw straws of barley and rice, the organic matter content showed tendency to decrease as the years go on. During rice cultivation season, organic matter decreased little by little, but it increased again after rice harvest season. Rice yield was more in order of Sodami, Chunghaejinmi and Saenuri. We judge that there is an advantage in rice yield of rice cultivars which have later heading date because of suitable ripening temperature. Although Sobibyeo and Shindongjinbyeo showed high yield, head rice yield decreased severely owing to chalky and cracked rice.

  • PDF