• Title/Summary/Keyword: Change detect

Search Result 1,213, Processing Time 0.025 seconds

A Comparison Study of Alkalinity and Total Carbon Measurements in $CO_2$-rich Water (탄산수의 알칼리도 및 총 탄소 측정방법 비교 연구)

  • Jo, Min-Ki;Chae, Gi-Tak;Koh, Dong-Chan;Yu, Yong-Jae;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Alkalinity and total carbon contents were measured by acid neutralizing titration (ANT), back titration (BT), gravitational weighing (GW), non-dispersive infrared-total carbon (NDIR-TC) methods for assessing precision and accuracy of alkalinity and total carbon concentration in $CO_2$-rich water. Artificial $CO_2$-rich water(ACW: pH 6.3, alkalinity 68.8 meq/L, $HCO_3^-$ 2,235 mg/L) was used for comparing the measurements. When alkalinity measured in 0 hr, percent errors of all measurement were 0~12% and coefficient of variation were less than 4%. As the result of post-hoc analysis after repeated measure analysis of variance (RM-AMOVA), the differences between the pair of methods were not significant (within confidence level of 95%), which indicates that the alkalinity measured by any method could be accurate and precise when it measured just in time of sampling. In addition, alkalinity measured by ANT and NDIR-TC were not change after 24 and 48 hours open to atmosphere, which can be explained by conservative nature of alkalinity although $CO_2$ degas from ACW. On the other hand, alkalinity measured by BT and GW increased after 24 and 48 hours open to atmosphere, which was caused by relatively high concentration of measured total carbon and increasing pH. The comparison between geochemical modeling of $CO_2$ degassing and observed data showed that pH of observed ACW was higher than calculated pH. This can be happen when degassed $CO_2$ does not come out from the solution and/or exist in solution as $CO_{2(g)}$ bubble. In that case, $CO_{2(g)}$ bubble doesn't affect the pH and alkalinity. Thus alkalinity measured by ANT and NDIR-TC could not detect the $CO_2$ bubble although measured alkalinity was similar to the calculated alkalinity. Moreover, total carbon measured by ANT and NDIR-TC could be underestimated. Consequently, it is necessary to compare the alkalinity and total carbon data from various kind of methods and interpret very carefully. This study provide technical information of measurement of dissolve $CO_2$ from $CO_2$-rich water which could be natural analogue of geologic sequestration of $CO_2$.

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

Sentinel-1 SAR image-based waterbody detection technique for estimating the water storage in agricultural reservoirs (농업저수지의 저수량 추정을 위한 Sentinel-1 SAR 영상 기반 수체탐지 기법)

  • Jeong, Jaehwan;Oh, Seungcheol;Lee, Seulchan;Kim, Jinyoung;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.535-544
    • /
    • 2021
  • Agricultural water occupies 48% of water demand, and management of agricultural reservoirs is essential for water resources management within agricultural basins. For more efficient use of agricultural water, monitoring the distribution of water resources in agricultural reservoirs and agricultural basins is required. Therefore, in this study, three threshold determination methods (i.e., fixed threshold, Otsu threshold, Kittler-Illingworth (KI) threshold) were compared to detect terrestrial water bodies using Sentinel-1 images for 3 years from 2018 to 2020. The purpose of this study was to evaluate methods for determining threshold values to more accurately estimate the reservoir area. In addition, by analyzing the relationship between the water surface and water storage at the Edong, Gosam, and Giheung reservoirs, water storage based on the SAR image was estimated and validated with observations. The thresholding method for detecting a waterbody was found to be the most accurate in the case of the KI threshold, and the water storage estimated by the KI threshold indicated a very high agreement (r = 0.9235, KGE' = 0.8691). Although the seasonal error characteristics were not observed, the problem of underestimation at high water levels may occur; the relationship between the water surface and the water storage could change rapidly. Therefore, it is necessary to understand the relationship between the water surface area and water storage through ground observation data for a more accurate estimation of water storage. If the use of SAR data through water resources satellites becomes possible in the future, based on the results of this study, it is judged that it will be beneficial for monitoring water storage and managing drought.

Detection Ability of Occlusion Object in Deep Learning Algorithm depending on Image Qualities (영상품질별 학습기반 알고리즘 폐색영역 객체 검출 능력 분석)

  • LEE, Jeong-Min;HAM, Geon-Woo;BAE, Kyoung-Ho;PARK, Hong-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.82-98
    • /
    • 2019
  • The importance of spatial information is rapidly rising. In particular, 3D spatial information construction and modeling for Real World Objects, such as smart cities and digital twins, has become an important core technology. The constructed 3D spatial information is used in various fields such as land management, landscape analysis, environment and welfare service. Three-dimensional modeling with image has the hig visibility and reality of objects by generating texturing. However, some texturing might have occlusion area inevitably generated due to physical deposits such as roadside trees, adjacent objects, vehicles, banners, etc. at the time of acquiring image Such occlusion area is a major cause of the deterioration of reality and accuracy of the constructed 3D modeling. Various studies have been conducted to solve the occlusion area. Recently the researches of deep learning algorithm have been conducted for detecting and resolving the occlusion area. For deep learning algorithm, sufficient training data is required, and the collected training data quality directly affects the performance and the result of the deep learning. Therefore, this study analyzed the ability of detecting the occlusion area of the image using various image quality to verify the performance and the result of deep learning according to the quality of the learning data. An image containing an object that causes occlusion is generated for each artificial and quantified image quality and applied to the implemented deep learning algorithm. The study found that the image quality for adjusting brightness was lower at 0.56 detection ratio for brighter images and that the image quality for pixel size and artificial noise control decreased rapidly from images adjusted from the main image to the middle level. In the F-measure performance evaluation method, the change in noise-controlled image resolution was the highest at 0.53 points. The ability to detect occlusion zones by image quality will be used as a valuable criterion for actual application of deep learning in the future. In the acquiring image, it is expected to contribute a lot to the practical application of deep learning by providing a certain level of image acquisition.

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

Designing and Fabricating of the High-visibility Smart Safety Clothing (고시인성 스마트 안전의류의 설계 및 제작)

  • Park, Soon-Ja;Kim, Sun-Woong
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.105-116
    • /
    • 2020
  • The purpose of this study is to progress the limitations and disadvantages of existing safety clothing by applying high technology to current safety clothing that is produced and distributed only with fluorescent fabrics and retroreflective materials. Therefore, the industrial suspender-type safety belt and engineering technology are introduced, designed, and fabricated to help save a life in an emergency. First, the suspender-type safety belt to be developed is designed to emit light by LED attached to the film, and the body of the belt-wearer is recognized from a distance through retroreflection from the flashing LED. It aims to support people's safety by preventing accidents during roadside work, rescue activities, and sports activities at night. Second, with the development of advanced devices when the user is in an unconscious state due to distress or falls into an unconscious state due to distress or accident, the tilt sensor of the control unit attached to the belt automatically detects the angle of the human body and generates light and sound. It is intended to further enhance the utilization by mounting a sensing and signaling device that generates a distress signal and shaping it in the form of a belt attached to a vest that can be easily detached from the outside of the garment. When the wearer falls due to an accident, the tilt sensor of this belt detects the angle change and then the controller generates a high-frequency sound and repeated LED blinking signals at the same time. In the case of conventional safety vests, it is almost impossible to detect that the person is wearing a vest when there is no ambient light, but in case of the safety belts in this study, the sound and light signals of the safety belt enable us to find the wearer within 100 meters even when there is no ambient light.

Surface Change Detection in the March 5Youth Mine Using Sentinel-1 Interferometric SAR Coherence Imagery (Sentinel-1 InSAR 긴밀도 영상을 이용한 3월5일청년광산의 지표 변화 탐지)

  • Moon, Jihyun;Kim, Geunyoung;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.531-542
    • /
    • 2021
  • Open-pit mines require constant monitoring as they can cause surface changes and environmental disturbances. In open-pit mines, there is little vegetation at the mining site and can be monitored using InSAR (Interferometric Synthetic Aperture Radar) coherence imageries. In this study, activities occurring in mine were analyzed by applying the recently developed InSAR coherence-based NDAI (Normalized Difference Activity Index). The March 5 Youth Mine is a North Korean mine whose development has been expanded since 2008. NDAI analysis was performed with InSAR coherence imageries obtained using Sentinel-1 SAR images taken at 12-day intervals in the March 5 Youth Mine. First, the area where the elevation decreased by about 75.24 m and increased by about 9.85 m over the 14 years from 2000 was defined as the mining site and the tailings piles. Then, the NDAI images were used for time series analysis at various time intervals. Over the entire period (2017-2019), average mining activity was relatively active at the center of the mining area. In order to find out more detailed changes in the surface activity of the mine, the time interval was reduced and the activity was observed over a 1-year period. In 2017, we analyzed changes in mining operations before and after artificial earthquakes based on seismic data and NDAI images. After the large-scale blasting that occurred on 30 April 2017, activity was detected west of the mining area. It is estimated that the size of the mining area was enlarged by two blasts on 30 September 2017. The time-averaged NDAI images used to perform detailed time-series analysis were generated over a period of 1 year and 4 months, and then composited into RGB images. Annual analysis of activity confirmed an active region in the northeast of the mining area in 2018 and found the characteristic activity of the expansion of tailings piles in 2019. Time series analysis using NDAI was able to detect random surface changes in open-pit mines that are difficult to identify with optical images. Especially in areas where in situ data is not available, remote sensing can effectively perform mining activity analysis.

A Study on Termite Monitoring Method Using Magnetic Sensors and IoT(Internet of Things) (자력센서와 IoT(사물인터넷)를 활용한 흰개미 모니터링 방법 연구)

  • Go, Hyeongsun;Choe, Byunghak
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.206-219
    • /
    • 2021
  • The warming of the climate is increasing the damage caused by termites to wooden buildings, cultural properties and houses. A group removal system can be installed around the building to detect and remove termite damage; however, if the site is not visited regularly, every one to two months, you cannot observe whether termites have spread within, and it is difficult to take prompt effective action. In addition, since the system is installed and operated in an exposed state for a long period of time, it may be ineffective or damaged, resulting in a loss of function. Furthermore if the system is installed near a cultural site, it may affect the aesthetic environment of the site. In this study, we created a detection system that uses wood, cellulose, magnets, and magnetic sensors to determine whether termites have entered the area. The data was then transferred to a low power LoRa Network which displayed the results without the necessity of visiting the site. The wood was made in the shape of a pile, and holes were made from the top to the bottom to make it easier for termites to enter and produce a cellulose sample. The cellulose sample was made in a cylindrical shape with a magnet wrapped in cellulose and inserted into the top of a hole in the wood. Then, the upper part of the wood pile was covered with a stopper to prevent foreign matter from entering. It also served to block external factors such as light and rainfall, and to create an environment where termites could add cellulose samples. When the cellulose was added by the termites, a space was created around the magnet, causing the magnet to either fall or tilt. The magnetic sensor inside the stopper was fixed on the top of the cellulose sample and measured the change in the distance between the magnet and the sensor according to the movement of the magnet. In outdoor experiments, 11 cellulose samples were inserted into the wood detection system and the termite inflow was confirmed through the movement of the magnet without visiting the site within 5 to 17 days. When making further improvements to the function and operation of the system it in the future, it is possible to confirm that termites have invaded without visiting the site. Then it is also possible to reduce damage and fruiting due to product exposure, and which would improve the condition and appearance of cultural properties.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.