• Title/Summary/Keyword: Chamber cleaning

Search Result 68, Processing Time 0.03 seconds

Analysis of impingement mixing for coating in injection mold (사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석)

  • Kim, Seul-Woo;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

New SMOLED Deposition System for Mass Production

  • Lee, J.H.;Kim, C.W.;Choi, D.K.;Kim, D.S.;Bae, K.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.407-410
    • /
    • 2003
  • We will introduce our new concept deposition system for SMOLED manufacturing in this conference. This system is designed to deposit organic and metal material to downward to overcome the limit of substrate size and process tact time hurdle for OLED mass production, and is organized with organic deposition chamber, substrate pre-cleaning chamber, metal deposition chamber and encapsulation system. These entire process chambers are integrated with linear type substrate transfer system. We also compare our new SMOLED manufacturing system with conventional vacuum deposition systems, and show basic organic thin film property data, organic material deposition property data, and basic device property.

  • PDF

Design of the discharge cleaning system for KSTAR vacuum vessel (KSTAR 제1벽 세정을 위한 방전세정 시스템 설계)

  • Jeong, S.H.;In, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.383-387
    • /
    • 2007
  • In this paper the design of the discharge cleaning system for KSTAR vacuum vessel is described. We first discuss about the parameters which are related the efficiency of discharge cleaning. The RG(RF-assisted Glow) discharge which has the ignition and sustain pressure lower than those in the case of DC discharge, thus has the higher efficiency of discharge cleaning. So we adopt the RG discharge, in practical design, for KSTAR discharge cleaning system. For uniformity of the cleaning effect, we plan to install two discharge cleaning systems in A- and I-port of the KSTAR vacuum vessel. The designed system will be adapted for the study of the fuel recycling and of the boronization as well as the discharge cleaning of the KSTAR vacuum vessel.

Development of new cleaning technology using ionized water by electrolysis (전기분해 이온수를 이용한 세정기술 개발)

  • 변문기;백희원;조봉희;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.617-620
    • /
    • 1999
  • To reduce the consumption of chemicals and ultra pure water(UPW) in cleaning process used in device manufacturing, we proposed wet processes that use electrolytic ionized water(EIW), which is generated by electrolysis of a diluted electrolyte solution or UPW and systemically investicate the EIW\`s characteristics. EIW\`s pH values are increased in cathode chamber and decreased in anode chamber according to the electrolysis time and its varied ratio is reduced with time increasement. The variation of pH and ORP is increased accordin to the applied voltage until critical voltage. But more than that voltage, the variation is decreased because of ion\`s scattering effect. When electrolyte is added, the effects of electrolysis is increased because electrolyte acts as catalyst. But when the density of electrolyte is increased more than critical value, ion\`s flowage is obstructed and the effects of electrolysis is decreased.

  • PDF

Development of Particle Deposition System for Cleaning Process Evaluation in Semiconductor Fabrication (반도체 세정 공정 평가를 위한 나노입자 안착 시스템 개발)

  • Nam, Kyung-Tag;Kim, Young-Gil;Kim, Ho-Joong;Kim, Tae-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.49-52
    • /
    • 2007
  • As the minimum feature size decrease, control of contamination by nanoparticles is getting more attention in semiconductor process. Cleaning technology which removes nanoparticles is essential to increase yield. A reference wafer on which particles with known size and number are deposited is needed to evaluate the cleaning process. We simulated particle trajectories in the chamber by using FLUENT. Charged monodisperse particles are generated using SMPS (Scanning Mobility Particle Sizer) and deposited on the wafer by electrostatic force. The Experimental results agreed with the simulation results well. We calculate the particles loss in pipe flow theoretically and compare with the experimental results.

  • PDF

A Study on the removal of Metallic Impurities on Si-wafer using Electrolyzed Water (전해수를 이용한 실리콘 웨이퍼 표면의 금속오염 제거)

  • Yoon, Hyo-Seob;Ryoo, Kun-Kul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.1-5
    • /
    • 2000
  • As the semiconductor devices are miniaturized, the number of the unit cleaning processes increases. In order to processes by conventional RCA cleaning process, the consumption of volume of liquid chemical and DI water became huge. Therefore, the problem of environmental issues are evolved by the increased consumption of chemicals. To resolve this matter, an advanced cleaning process by Electrolyzed Water was studied in this work. The electrolyzed water was made by an electrolysis equipment which was composed of three chambers of anode, cathode, and middle chambers. In the case of electrolyzed water with electrolytes in the middle chamber, oxidatively acidic water of anode and reductively alkaline water of cathode were obtained. The oxidation/reduction potentials and pH of anode water and cathode water were measured to be +l000mV and 4.8, and -530mV and 6.3, respectively. The Si-wafers contaminated with metallic impurities were cleaning with the electrolyzed water. To analysis the amounts of metallic impurities on Si-water surfaces, ICP-MS(Inductively Coupled Plasma-Mass spectrometer) was introduced. From results of ICP-MS measurements, it was concluded that the ability of electrolyzed water was equivalent to that of the conventional RCA cleaning.

  • PDF

Optimizing Cleaning Period of Oxide Etcher Using Optical Emission Spectroscopy (광방출 분석법을 이용한 산화물 식각 장비의 세정 주기 최적화)

  • Son, Gil-Su;Roh, Yong-Han;Yeom, Geun-Young;Kim, Su-Hong;Kim, Myoung-Woon;Cho, Hyung-Chul
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.416-421
    • /
    • 2011
  • In this paper, the relationship of chamber contamination and the intensity change of specific wavelength was investigated. "diff_CO" formula was introduced to rule out background noise caused by external conditions and to detect when the polymer is removed from the chamber. As RF time increased, diff_CO trend showed the decrease of the maximum peak and increased number of small intensity peaks. From the diff_CO change, it was possible to determine when the chamber needs to be cleaned without opening the chamber.