• Title/Summary/Keyword: Chamber Pressure Model

Search Result 376, Processing Time 0.061 seconds

Study of Starting Pressure of a Supersonic Ejector with a Second-Throat (이차목을 갖는 초음속 이젝터 작동압력에 대한 연구)

  • Jin, Jung-Kun;Kwon, Se-Jin;Kim, Se-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.934-939
    • /
    • 2005
  • Starting pressure of a supersonic ejector with a second-throat was investigated. In case of mixing chamber length longer than a critical length, starting pressure is in proportion to length of the mixing chamber. In this study, we assumed that the ejector starts when the primary supersonic flow reaches inlet of the second-throat and the distance of the supersonic flow traveling can be expressed by multiplying an empirical factor to the first diamond shock length of overexpanded flow. To calculate the overexpanded supersonic flow, a mixing model was employed to compute secondary flow pressure and the result was applied to back pressure condition of overexpanded flow calculation. In the result, for three cases of primary nozzle area ratio, we could get accurate model of predicting the starting pressure by selecting a suitable empirical factors around 3.

Experimental Study on the Characteristics of Pressure Fluctuation in the Combustion Chamber with Branch Tube (분기관을 가진 연소 챔버 내 압력변동 특성에 관한 실험적 연구)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.552-558
    • /
    • 2009
  • An experimental study using the combustor with branch tube was conducted in order to model the industry combustor with FGR (flue gas recirculation) system and to study a thermo-acoustic instability generated by a branch tube. The branch tube is a structure used to modify a system geometry and then to change its pressure field, and the thermo-acoustic instability, usually occurs in a confined geometry, can result in serious problems on industrial combustors. Thus understanding of the instability created by modifying geometry of combustor is necessary to design and operate combustor with FGR system. Pressure fluctuation in the combustion chamber was observed according to diameter and length of branch and it was compared with the solution of 1-D wave equation. It was found that branch tube affects the pressure field in the combustion chamber, and the pressure fluctuation in the combustion chamber was reduced to almost zero when phase difference between an incipient wave in the combustion chamber and a reflected wave in the branch tube is $\pi$ at the branch point. Also, the reduction of pressure fluctuation is irrespective of the installed height of branch tube if it is below $h^*=0.9$ in the close-open tube and open-open tube.

Development of a Measurement System of the Transferred Pressure from Intermittent Pneumatic Compression Device (간헐적공기압박장치의 전달압력 측정시스템 개발)

  • Lee, Wonhee;Seo, Jong Hyun;Kim, Jun;Kang, Seung Ho;Kim, Gook Han;Chung, Seung Hyun;Kim, Kwang Gi;Kang, Hyun Guy
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • A pressure measurement system was developed to verify magnitude and position of transferred pressure on the body surface during the intermittent pneumatic compression (IPC) which is one of the most well-known methods for the prevention of deep vein thrombosis (DVT). Eighty force sensing resistors (FSR) were arranged on a mannequin leg and a hardware controller sensed, digitized, and transferred pressure data every second while IPC was being applied. Finally, sensed pressure data were color coded and visualized on the 3D model with lab-developed software. The pressure data were also saved to files for further analysis. Using this measurement system, the changing pattern of pressure was measured on the mannequin leg by changing both chamber pressure and cuff tightness. As a result, net pressure transferred onto the body surface is dependent on chamber pressure and cuff tightness. Under the same chamber pressure, the tighter a cuff was worn, the wider compressed area was and the shorter compression cycle was. Also transferred pressure was proportional to both chamber pressure and cuff tightness.

On the Method for Hot-Fire Modeling of High-Frequency Combustion Instability in Liquid Rocket Engines

  • Sohn, Chae-Hoon;Seol, Woo-Seok;Valery P. Pikalov
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1010-1018
    • /
    • 2004
  • This study presents the methodological aspects of combustion instability modeling and provides the numerical results of the model (sub-scale) combustion chamber, regarding geometrical dimensions and operating conditions, which are for determining the combustion stability boundaries using the model chamber. An approach to determine the stability limits and acoustic characteristics of injectors is described intensively. Procedures for extrapolation of the model operating parameters to the actual conditions are presented, which allow the hot-fire test data to be presented by parameters of the combustion chamber pressure and mixture (oxidizer/fuel) ratio, which are customary for designers. Tests with the model chamber, based on the suggested scaling method, are far more cost-effective than with the actual (full-scale) chamber and useful for injector screening at the initial stage of the combustor development in a viewpoint of combustion instabilities.

High Precision Pressure Control of a Pneumatic Chamber using a Hybrid Fuzzy PID Controller

  • Liu, Hao;Lee, Jae-Cheon;Li, Bao-Ren
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.8-13
    • /
    • 2007
  • A hybrid fuzzy PID controller for a pneumatic chamber is proposed in this paper. First, a mathematical model of a pneumatic pressure servocontrol system was developed where separate implementations of a PID controller and a fuzzy controller were made. The experimental results using a step input signal revealed that the PID controller accurately controlled the steady-state pressure but did not robustly handle parameter variations in the system while the fuzzy controller provided a fast rise time and low overshoot of the pressure in the system. In order to attain the advantages of both the fuzzy and PID controllers, a hybrid control scheme was developed. The experimental results show that the hybrid fuzzy PID controller proposed in this study does indeed possess the advantages of both PID and fuzzy controllers. Hence, it can be concluded that the hybrid fuzzy PID controller is suited for high-precision control of pressure in a pneumatic chamber.

Verification and Analysis of Characteristics of Mechanical Pulsation for Combustion Stability Study in a Model Chamber (모형 연소기의 연소 불안정성 연구용 섭동 장치의 기능 검증 및 분석)

  • Min, Yong-Ho;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.28-30
    • /
    • 2012
  • A mechanical pulsator is manufactured for study of combustion instabilities in a model chamber with impinging-jet injectors. Artificial disturbance is generated by the device and thereby, artificial instability can be examined experimentally. A sample F(fuel)-O(dxidizer)-O-F impinging-jet injector is adopted for the test. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions. Pressure fluctuation data, which is obtained from the dynamic pressure transducers installed in combustion chamber, is analyzed.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyu-Bok;Kim, Jong-Gyu;Lim, Byoung-Jik;Kim, Mun-Ki;Kang, Dong-Hyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.807-812
    • /
    • 2011
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyubok;Kim, Jong-Gyu;Lim, Byoungjik;Kim, Munki;Kang, Donghyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

DEVELOPMENT OF A METHOD FOR CONTROLLING GAS CONCENTRATION FOR USE IN C.A EXPERIMENTS

  • Yun, H.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.662-669
    • /
    • 2000
  • Based on the viscous flow characteristics of gas through capillary tube, a simple and low cost system was developed for controlling gas concentration for use in C.A experiments. The gas flow rate through capillary tube had a linear relationship with pressure, $(length)^{-1}$ and $(radius)^4$ of capillary tube, which agreed well with Hagen-Poiseuille's law. The developed system could control the gas concentration in storage chamber within ${\pm}0.3%$ deviation compared to the preset concentration. The required time for producing target gas concentration in storage chamber was exactly predicted by the model used in this study, and it required much longer time than the calculated time which divided the volume of chamber by flow rate. Therefore, for producing target gas concentration as quickly as possible, it needs to supply higher flow rate of gas during the initial stage of experiment when gas concentration in storage chamber has not reached at target value. It appeared that the developed system was very useful for C.A experiments. Because one could decide a desired flow rate by the prediction model, control flow rate freely and easily by changing pressure in the pressure-regulating chamber and the accuracy was high.

  • PDF

A Study on the Vertical Bearing Capacity of Batter Piles Subjected to Vertical Load (연직하중을 받는 경사말뚝의 연직지지력에 관한 연구)

  • 성인출;이민희;최용규;권오균
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • In this study, based on the relationship of the vertical force - settlement of batter piles obtained by pressure chamber model tests, the vertical bearing capacity of vertical and batter piles according to the increase of pile inclination was analyzed. A model open - ended steel pipe pile with the inclination of 5$^\circ$, 10$^\circ$ and 15$^\circ$ was driven into saturated fine sand with relative density of 50 %, and the static compression load tests were performed under each confining pressure of 35, 70 and 120 kPa in pressure chamber. The vertical bearing capacity of pile obtained from pressure chamber tests increased with the pile inclination. In the case of the inclination of 5$^\circ$, 10$^\circ$, 15$^\circ$, increasing ratios of pile bearing capacity were 111, 121, 127 ~ 140 % of vertical bearing capacity respectively. In the case of the inclination of above 20$^\circ$, the model tests could not be performed because of pile of pile head during compressive loading on the pile head.