• Title/Summary/Keyword: Chamber Geometry

Search Result 179, Processing Time 0.024 seconds

A Study on the Characteristics of Heat Energy Distribution of Fire-Proof Clay with Microwave Heating Drying (MICROWAVE 가열 건조에 의한 내화 점토의 열에너지 분포 특성 연구)

  • Lee, S.J.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.752-757
    • /
    • 2001
  • The characteristics of heat energy distribution on the fire-proof clay with microwave heating drying are numerically investigated using finite element method. The modelled regular hexahedron chamber$(50cm\times50cm\times50cm)$ filled with air consists of vertical heat source and sink walls, a fire-proof clay model, and adiabatic plates on the top and bottom walls. With different geometrical aspect ratios of the fire-proof clay model, the heat energy distribution is throughly investigated. The model gave a good prediction of the microwave heating characteristics of fire-proof clay. The optimal shape of the fire-proof clay for given chamber geometry and microwave power is analyzed.

  • PDF

Numerical Analysis of the Formation of New Impinging Spray in the Combustion System (디젤연소실에서 새로운 충돌분무 형성에 대한 수치적 고찰)

  • Ryoo, Sung-Mok;Cha, Keun-Jong;Kim, Duck-Jool;Park, Kweonha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1625-1634
    • /
    • 1998
  • The objective of this study is to establish geometric guidelines for design of impaction parts prepared for removing undesirable effects of fuel deposition on a wall in small direct-injection diesel engines. In order to get the guidelines a new wall geometry is introduced and assessed, which has a flat top and a slant edge. The size of the flat top and the angle of the slant edge are varied and tested in same chamber condition, then their effects on spray dispersions and drop sizes are discussed. The results show that the case of 3.0mm flat top and $60^{\circ}$ edge angle gives the best spray characteristics for a small combustion chamber in the test conditions chosen in this paper.

Prediction of Transmission Loss of Elliptic Expansion Chamber with Mean Flow by 3-Dimensional Finite Element Method (3차원 유한요소법을 이용한 타원 단면 소음기의 투과 손실 계산)

  • 윤성기;이응식
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.271-278
    • /
    • 1993
  • Acoustic characteristics of silencer system are affected by various geometric parameters such as cross sectional geometry, size of chamber, and location of inlet-outlet port. It is impossible to obtain exact solutions of the equations of acoustic wave propagation except few simple cases. So, we resort to numerical techniques to analyze performance of acoustic system. In this work, finite element formulation has been obtained to predict transmission loss of an arbitrary 3-dimensional muffler in the presence of mean flow of low mach number. The effect of the degree of the ellipticity of expansion chambers on the transmission loss has been studied using the resulting finite element equation.

  • PDF

Effect of Internal Geometry of Nozzle on the Velocity and Droplet Size of Twin Spray (노즐이 내부형상이 이중분무의 유속과 입경에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1522-1527
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and swirl chamber aspect ration of nozzle on the characteristics of single and twin spray. The performances of nozzle has been investigated by measurements of spray angle, droplet size, velocity and Weber number at a water pressure 0.4MHz. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the smaller swirler angle, the larger axial velocity became. It was also shown that the larger aspect ratio, the smaller droplet diameter became.

  • PDF

Large Eddy Simulation of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber (급 확대부를 갖는 실린더 챔버 내부의 둔각물체 주위 유동에 관한 대 와동 모사)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.98-108
    • /
    • 2004
  • This study concerns a large eddy simulation (LES) of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber, a configuration which resembles a premixed gas turbine combustor The simulation code is constructed by using the general coordinate system based on the physical contravariant velocity components. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The combined grid technique and cylindrical grid are tested in the numerical simulation with complex geometry. The predicted turbulent statistics are evaluated by comparing with LDV measurement data. The numerical flow visualizations depict the behavior of turbulent mixing process behind the flame holder.

Analysis of Low Reynolds Number Flow in Nozzle and Diffuser (노즐-디류저 내에서의 저 Reynolds수 해독특성 해석)

  • Song, Gwi-Eun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2672-2677
    • /
    • 2007
  • An investigation of low Reynolds number flow in nozzles and diffusers which are widely used in the valveless micropump is presented. Flow characteristics in the nozzle and diffuser are explained in view of viscous effect and flow oscillation induced by pumping membrane. These calculation results show that the rectification property of valveless micropump is due to a flow separation in the diffuser and the separation is largely originated from the flow oscillation. Under the assumptions of steady flow velocity profile and flow separation in the diffuser, simplified analytical models are provided to see the dependency of rectification on the micropump geometry. Geometric parameters of channel length, nozzle throat, chamber size, and converging/diverging angle are depicted through the analytical models in low Reynolds number flow, and the prediction and experimental results are compared. This theoretical study can be used to determine the optimum geometry of valveless micropump.

  • PDF

Numerical study on the effects of nozzle geometry and substrate location in the supersonic flow (노즐 형상과 기판의 위치 변화가 초음속 유동에 미치는 영향에 관한 수치해석 연구)

  • Park, Jung Jae;Yoon, Suk Goo;Kim, Ho Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • This paper deals with the simulation of solid particle coating technology via supersonic nozzle in vacuum environment to devote as an aerosol-deposition device. In order to improve efficiencies of nozzle and coating process, effects of shockwave, nozzle geometry, and substrate location were studied computationally under a fixed chamber pressure of 0.01316 bar which is nearly vacuous. Shockwave is the important factor affect to entire flow because shockwave in the jet flow dissipates the kinetic energy of the flow in the supersonic condition. Results show that various nozzle geometries have significant effect on the supersonic flow and we know that the supersonic nozzle should be optimized to minimize the loss of the flow. Another parameter, the distance between substrate and nozzle tip, shows little effect in this study.

  • PDF

Dynamic Extinction of Solid Propellants by Depressurization of Combustion Chamber (연소실 압력 강하에 의한 고체 추진제의 동적 소화)

  • Jeong, Ho-Geol;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2002
  • Dynamic extinction of solid propellants subjected to rapid pressure drop was studied with the aid of energy equation of condensed phase and flame model in gas phase. It is found that the total residence time($\tau_\gamma$) which measures the residing time of fuel in the reaction zone may play a crucial role in determining the dynamic response of the combustuion to extinction. Residence time was modeled by various combinations of diffusion and chemocal kinetic time scale. Effect of pressure history coupled with chamber volume on the extinction response was also performed and was found that dynamic extinction is more susceptible in a confined chamber than in open geometry. And, dynamic extinction was revealed to be affected profoundly by diffysion time scale rather than chemical kinetic time scale.

An Efficient Transmissibility-design Technique for Pneumatic Vibration Isolator (지반진동절연을 위한 공압제진대의 전달률 설계기법)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.411-423
    • /
    • 2008
  • Pneumatic vibration isolator has a wide application for ground-vibration isolation of vibration-sensitive equipments. Recent advances In precision machine tools and instruments such as nano-technology or medical devices require a better isolation performance, which can be efficiently done by precise modeling- and design- of the isolation system. This paper will discuss an efficient transmissibility design method for pneumatic vibration isolator by employing the complex stiffness model of dual-chamber pneumatic spring developed in our previous research. Three design parameters of volume ratio between the two pneumatic chambers, the geometry of capillary tube connecting the two pneumatic chambers and finally the stiffness of diaphragm necessarily employed for prevention of air leakage were found to be important factors in transmissibility design. Based on design technique that maximizes damping of dual-chamber pneumatic spring, trade-off among the resonance frequency of transmissibility, peak transmissibility and transmissibility in high frequency range was found, which was not ever stated in previous researches. Furthermore this paper will discuss about negative role of diaphragm in transmissibility design. Then the design method proposed in this paper will be illustrated through experiment at measurements.

Investigation of Small Current Interruption Performance for New Type of Interrupting Chamber in SF$_{6}$ Gas Circuit Breaker (신차단방식 SF$_{6}$ 가스 차단기의 소전류 차단성능 연구)

  • Song, Won-Pyo;Kweon, Ki-Yeoung;Lee, Jae-Sung;Song, Ki-Dong;Kim, Maeng-Hyun;Ko, Hee-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.519-526
    • /
    • 2005
  • This paper presents computer simulation results for developing new type of SF$_{6}$ Circuit Breaker in terms of cold gas flow after small current interruption. This cold gas flows down a nozzle into the chamber of a circuit breaker. There are many difficult problems in analyzing the gas flow due to complex geometry, moving boundary, shock wave and so on. When predicting the dielectric capability of a gas circuit breaker after interruption, the gas pressure and density distributions due to the cold gas must be considered in addition to the electrical field imposed across the gas. A self-coded computational fluid dynamics (CFD) program is used for the simulation of cold gas flow in order to evaluate the electrical field characteristic across open contacts and transient characteristics of insulations after small current interruption.