• Title/Summary/Keyword: Chalcogenide glass lens

Search Result 19, Processing Time 0.023 seconds

Chalcogenide Ge-Sb-Se Optical and Crystallization Characteristics for Basic a Planning Aspheric Lens (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se 광학계 및 결정화 특성 연구)

  • Myung, Tae Sik;Ko, Jun Bin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.598-603
    • /
    • 2016
  • The recent development of electro-optic devices and anticorrosion media has led to the necessity to investigate infrared optical systems with solid-solid interfaces of materials that often have the characteristic of amorphousness. One of the most promising classes of materials for those purposes seems to be the chalcogenide glasses. Chalcogenide glasses, based on the Ge-Sb-Se system, have drawn a great deal of attention because of their use in preparing optical lenses and transparent fibers in the range of 3~12 um. In this study, amorphous Ge-Sb-Se chalcogenide for application in an infrared optical product design and manufacture was prepared by a standard melt-quenching technique. The results of the structural, optical and surface roughness analysis of high purity Ge-Sb-Se chalcogenide glasses are reported after various annealing processes.

Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구)

  • Ko, Jun Bin;Myung, Tae Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.

Glass Forming Stability in Chalcogenide-based GeSbSe Materials for IR-Lens (적외선 렌즈용 Ge-Sb-Se계 칼코게나이드의 유리안정성 평가)

  • Jung, Gun-Hong;Kong, Heon;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.204-209
    • /
    • 2017
  • Thermal and structural stability in the glass transition region of chalcogenide glasses has been investigated in terms of thermodynamics for application to various optoelectronic devices. In this study, the compositions of $Ge_xSb_{20}Se_{80-x}$ (x = 10, 15, 20, 25, and 30) were selected to investigate the glass stability according to germanium ratios. The chalcogenide bulks were fabricated by using a traditional melt-quenching method. Thin films were deposited by a thermal evaporation system, maintaining the deposition ratio of $3{\sim}5{\AA}$ in order to have uniformity. The thermal and structural properties were measured by a differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The DSC analysis provided thermal parameters and theoretical glass region stabilities. The XRD analysis supported the theoretical stabilities because of where the crystallization peak data occurred.

Design and Fabrication of Low Cost Infrared Optical System Using Precision Glass Molding Lens Made by Chalcogenide Glass (칼코게나이드 유리 소재의 PGM 가공 렌즈를 사용한 저가의 적외선 광학계 설계와 제작)

  • Oh, Seung Eun;Lee, Sun Kyu;Choi, Joong Kyu;Song, Kook Hyun;Baek, Jong Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.154-158
    • /
    • 2012
  • In this paper, for low cost infrared optical equipment, we design and fabricate an infrared optical system for an uncooled detector using PGM(Precision Glass Molding) lenses. The designed infrared optical system has a good athermalization, and the material of all of its lenses is a chalcogenide glass suitable for the PGM method. In addition, we also fabricate the same infrared optical system using SPDT(Single Point Diamond Turning) lenses in order to measure the optical performance of PGM lenses. We measure the MTF(Modulation Transfer Function) of the two infrared optical systems which use the PGM lenses and the SPDT lenses. And then we compare and analyze the images of them both. As a result, we find that they have only a very small difference in optical performance. If the use of PGM lenses increases, we expect to reduce the cost of infrared optical equipment.

Development and Possibility Evaluation of Thermal Imaging Camera for Medical Monitoring of Body Temperature (열화상카메라 개발을 통한 의료용 체열진단 가능성 평가)

  • Ryu, Seong Mi;Kim, Hye-Jeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2015
  • Recently, thermography camera have been using for body-temperature monitoring. We report on fabrication of prototype thermography camera using the chalcogenide-glass lens and the camera test by analysis of thermal image. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ with noise equivalent temperature difference(NETD) of 87.7mK. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

Evaluations of Sb20Se80-xGex (x = 10, 15, 20, and 25) Glass Stability from Thermal, Structural and Optical Properties for IR Lens Application

  • Jung, Gun-Hong;Kong, Heon;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.484-491
    • /
    • 2017
  • Chalcogenide glasses have been investigated in their thermodynamic, structural, and optical properties for application in various opto-electronic devices. In this study, the $Sb_{20}Se_{80-x}Ge_x$ with x = 10, 15, 20, and 25 were selected to investigate the glass stability according to germanium ratios. The thermal, structural, and optical properties of these glasses were measured by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and UV-Vis-IR Spectrophotometry, respectively. The DSC results revealed that $Ge_{20}Sb_{20}Se_{60}$ composition showing the best glass stability theoretically results due to a lower glass transition activation energy of 230 kJ/mol and higher crystallization activation energy of 260 kJ/mol. The structural and optical analyses of annealed thin films were carried out. The XRD analysis reveals obvious results associated with glass stabilities. The values of slope U, derived from optical analysis, offered information on the atomic and electronic configuration in Urbach tails, associated with the glass stability.

Infrared Scanning Near-Field Optical Microscopy (IR-SNOM) Below the Diffraction Limit

  • Sanghera, J.S.;Aggarwal, I.D.;Cricenti, A.;Generossi, R.;Luce, M.;Perfetti, P.;Margoritondo, G.;Tolk, N.;Piston, D.
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.55-66
    • /
    • 2007
  • Infrared Scanning Near-field Optical Microscopy (IR-SNOM) is an extremely powerful analytical instrument since it combines IR spectroscopy's high chemical specificity with SNOM's high spatial resolution. In order to do this in the infrared, specialty chalcogenide glass fibers were fabricated and their ends tapered to generate SNOM probes. The fiber tips were installed in a modified near field microscope and both inorganic and biological samples illuminated with the tunable output from a free-electron laser located at Vanderbilt University. Both topographical and IR spectral images were simultaneously recorded with a resolution of ${\sim}50\;nm$ and ${\sim}100\;nm$, respectively. Unique spectroscopic features were identified in all samples, with spectral images exhibiting resolutions of up to ${\lambda}/60$, or at least 30 times better than the diffraction limited lens-based microscopes. We believe that IR-SNOM can provide a very powerful insight into some of the most important bio-medical research topics.

  • PDF