• Title/Summary/Keyword: Chalcogenide glass lens

Search Result 19, Processing Time 0.032 seconds

Development of Sealing Technology for Far-Infrared Multispectral ZnS Using Chalcogenide Glass Material

  • Soyoung Kim;Jung-Hwan In;Karam Han;Yoon Hee Nam;Seon Hoon Kim;Ju Hyeon Choi
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.515-521
    • /
    • 2022
  • Various types of optical materials and devices used in special environments must satisfy durability and optical properties. In order to improve the durability of zinc sulfide multispectral (MS ZnS) substrates with transmission wavelengths from visible to infrared, Ge-Sb-Se-based chalcogenide glass was used as a sealing material to bond the MS ZnS substrates. Wetting tests of the Ge-Sb-Se-based chalcogenide glass were conducted to analyze flowability as a function of temperature, by considering the glass transition temperature (Tg) and softening temperature (Ts). In the wetting test, the viscous flow of the chalcogenide glass sample was analyzed according to the temperature. After placing the chalcogenide glass disk between MS ZnS substrates (20 × 30 mm), the sealing test was performed at a temperature of 485 ℃ for 60 min. Notably, it was found that the Ge-Sb-Se-based chalcogenide glass sealed the MS ZnS substrates well. After the MS ZnS substrates were sealed with chalcogenide glass, they showed a transmission of 55 % over 3~12 ㎛. The tensile strength of the sealed MS ZnS substrates with Ge-Sb-Se-based chalcogenide glass was analyzed by applying a maximum load of about 240 N, confirming its suitability as a sealing material in the far infrared range.

Evaluation of Thermography Camera Using Molded Optical Lens for Medical Applications (몰드성형 광학렌즈를 이용한 의료기기용 열화상카메라 체열진단의 적용도 평가)

  • Ryu, Seong Mi;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.624-628
    • /
    • 2013
  • With the recent development of less-costly uncooled detector technology, expensive optics are among the remaining significant cost drivers in the thermography camera. As a potential solution to this problem, the fabrication of IR lenses using chalcogenide glass has been studied in recent years. We report on the molding and evaluation of a ultra-precision chalcogenide-glass lens for the thermography camera for body-temperature monitoring. In addition, we fabricated prototype thermography camera using the chalcogenide-glass lens and obtained the thermal image from the camera. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ through the analysis of thermal image. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

Molding and Evaluation of Ultra-Precision Chalcogenide-Glass Lens for Thermal Imaging Camera Using Thermal Deformation Compensation (열변형 보정을 통한 열화상카메라용 초정밀 칼코지나이드 유리렌즈 몰드성형 및 특성 평가)

  • Cha, Du Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • Aspheric lenses used in the thermal imaging are typically fabricated using expensive single-crystal materials (Ge and ZnS, etc.) by the costly single point diamond turning (SPDT) process. As a potential solution to reduce cost, compression molding method using chalcogenide glass has been attracted to fabricate IR optic. Thermal deformation of a molded lens should be compensated to fabricate chalcogenide aspheric lens with form accuracy of the submicron-order. The thermal deformation phenomenon of molded lens was analyzed ant then compensation using mold iteration process is followed to fabricate the high accuracy optic. Consequently, it is obvious that compensation of thermal deformation is critical and useful enough to be adopted to fabricate the lens by molding method.

Compression Molding of Diffractive-Aspheric Lenses Using Chalcogenide Glasses (칼코겐유리를 활용한 회절비구면렌즈 압축성형)

  • Kim, Ji-Kwan;Choi, Young-Soo;Ahn, Jun-Hyung;Son, Byeong-Rea;Hwang, Young-Kug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.43-48
    • /
    • 2020
  • This study explores the compression molding of diffractive-aspheric lenses using GeSbSe chalcogenide glasses. A mold core with diffractive structure was prepared and a chalcogenide glass lens was molded at various temperatures using the corresponding core. The effect of molding temperature on the transcription characteristics of diffractive structure was examined, by measuring and comparing the diffractive structure between the mold core and the molded chalcogenide glass lens using a microscope and a white light interferometer. In addition, the applicability of the molded lens for thermal imaging was evaluated, by measuring the form error.

Material Properties of GeSbSe Chalcogenide Glass and Fabrication Process for 8~12 ㎛ IR Region Aspherical Optical Lens (GeSbSe계 기반 8~12 ㎛ 파장대역 적외선 광학 렌즈 제작 및 비구면 렌즈 가공기술 개발)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Han, Sang-Hyun;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • The chalcogenide glass has superior optical properties in IR region transmittances. We have determined the composition of GeSbSe chalcogenide glass for the application of good IR lenses, resulting in the composite rate of $Ge_{19}Sb_{23}Se_{58}$. The optical, structural, thermal and physical properties were measured by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), X-ray computed tomography (X-ray CT) respectively. The fabrication of the chalcogenide glass lens for infrared optics applications was proposed using a diamond turning machining technology which is known as the suitable ways for the production cost reduction and the accurate fabrication process control.

A study on physical and chemical properties of chalcogenides for an aspheric lens (비구면 렌즈의 설계 및 제조를 위한 칼코게나이드계 유리의 물리적 화학적 특성 연구)

  • Ko, Jun-Bin;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.388-393
    • /
    • 2010
  • In recent years the research has been focused on the preparation of special glasses, i.e., chalcogenide and heavy metal oxide ones that can transmit optical radiation above 2 um and also other optical parameters exceed those of silica based glasses. The attention in this paper is focused on chalcogenide glasses, on preparation of high quality base glass, for an application in infrared optical product design and manufacture. The amorphous materials of As-Se and Ge-As-Se chalcogenides were prepared by a standard melt-quenching technique. The compositions were mesaured by ICP-AES and EPMA, and structural and thermal properties were studied through various annealing processes. Several anomalies of glass transition and crystallization were observed in the DSC/DTA/TG results of the chalcogenide glass.

A Study on the Properties and Fabrication of Bulk Forming GeSe Based Chalcogenide Glass for Infrared Optical Lens (적외선 광학렌즈 제작을 위한 GeSe의 벌크 제작 및 특성 연구)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Park, Jung-Hoo;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.641-645
    • /
    • 2013
  • Chalcogenide glass has superior property of optical transmittance in the infrared region. Glass made using Ge-Se how many important optical applications. We have determined the composite formular of $Ge_{0.25}Se_{0.75}$ to be the GeSe chalcogenide glass composition appropriate for IR lenses. Also, the optical, thermal and physical characteristics of chalcogenide glass depended on the composition ratio. GeSe bulk sample is produced using the traditional melt-quenching method. The optical, structural, thermal and physical properties of the compound were measured by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), and Scanning electron microscope (SEM) respectively.

Basic Design and Structural and Optical Glass Characteristic Study of Chalcogenide Aspheric Lens (칼코게나이드계 비구면 성형렌즈의 기초설계 및 구조적, 광학적 글래스 특성 연구)

  • Ko, Jun-Bin;Kim, Jeong-Ho;Byun, Dong-Hae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.69-74
    • /
    • 2010
  • An increasing interest towards the investigations of chalcogenide glasses has been observed in the past years. This interest is due to their specific properties, as well as to the possibilities for their application in different fields of science. The optical devices, working on the basis of photoinduced phase transition between amorphous and crystalline state in the chalcogenide glasses, are a perspective for the micro- and nano-electronics. Here we were analysis basic physical properties for Ge-As-Se and As-Se chalcogenide glasses samples for characteristic for a planning of chalcogenide aspheric lens. From differential DTA/TG results, activation energies of the crystallizations of $Ge_{10}As_{40}Se_{50}$ and $As_{40}Se_{60}$ were approximately 3.6 eV and 3.3 eV, respectively.