• Title, Summary, Keyword: Chalcogenide

Search Result 263, Processing Time 0.049 seconds

The PMC fabrication using the amorphous chalcogenide materials (비정질 칼코게나이드 재료를 이용한 PMC소자 제작)

  • Chung, Hong-Bay;Huh, Jung-Hwa;Son, Jung-Woo;Park, In-Ae;Cho, Dong-Hwan;Kim, Sung-Jin;Nam, Ki-Hyun
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1262_1263
    • /
    • 2009
  • Programmable Metallization Cell (PMC) is a memory device based on the electrolytical characteristic of chalcogenide materials. In this study, we investigate the nature of thin films formed by photo doping of Ag ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We were able to do more economical approach by using copper which play an electrolyte ions role. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from chalcogenide materials.

  • PDF

Effects of Chalcogenide Glasses Thin Film Encapsulation Layer on Lifetime of Organic Light Emitting Diodes

  • Fanghui, Zhang;Jianfei, Xi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.839-842
    • /
    • 2009
  • In this paper, chalcogenide glasses material(Se, Te, Sb) is firstly used as encapsulation layer of OLEDs under high vacuum of $10^{-4}$Pa. In the experiments, properties of OLEDs encapsulated by Se, Te, Sb thin film is compared with that of device encapsulated by traditional method. It is found that Se, Te, Sb film can extend lifetime of devices to 1.4, 2, 1.3 times respectively. Chalcogenide glasses film as encapsulation layer has little effect on some characteristics of device. The research indicated that OLEDs can be well protected upon applying Se, Te, Sb film as encapsulation layer. It is clear that it can prolong the lifetime obviously.

  • PDF

Chalcogenide계 열전재료

  • Kim, Il-Ho
    • Electrical & Electronic Materials
    • /
    • v.24 no.7
    • /
    • pp.10-17
    • /
    • 2011
  • 현재 개발 중인 Chalcogenide계 열전재료 중에서, 이방성 재료인 Thallium chalcogenide, Alkalimetal bismuth chalcogenide, Bismuth telluride와 등방성 재료인 Lead telluride, Silver antimony telluride, TAGS, LAST 및 SALT를 소개하였고, 이 재료들에 대한 연구 동향을 살펴보았다. Chalcogenide는 S, Se, Te 및 다른 원소와의 다양한 조합에 의해, 넓은 온도범위에서 열전재료로 응용하기 위한 밴드갭 에너지의 조절이 가능하다. 또한 합성공정에 따른 상변태, 석출 등 구조변화에 따른 열전특성의 변화를 기대할 수 있어 열전재료 개발 초기부터 활발한 연구가 진행되어 왔다. 과거의 전통적인 Chalcogenide계 열전재료뿐만 아니라, Chalcogenide계 열전 신소재에 대해서도 살펴보았다. Chalcogenide는 전자적, 광학적, 열적 성질 등 특성이 독특하고 변화가 무궁무진하여 아주 매력적이기 때문에, 앞으로도 계속 열전재료로서 각광받는 물질군으로 판단된다. 그림 11에 현재까지 ZT의 최댓값이 1이 넘는다고 보고된 열전재료의 성능지수를 요약하였다.

  • PDF

Electrical Switching Characteristics of Thin Film Transistor with Amorphous Chalcogenide Channel

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.280-281
    • /
    • 2011
  • We fabricated the devices of TFT type with the amorphous chalcogenide channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is about 4 order. Based on the experiments, we contained the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

Electrolyte Mechanizm Study of Amorphous Ge-Se Materials for Memory Application (메모리 응용을 위한 비정질 Ge-Se 재료의 전해질 메카니즘 연구)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.67-68
    • /
    • 2009
  • In this study, we studied the nature of thin films formed by photodoping chalcogenide materials with for use in programmable metallization cell devices, a type of ReRAM. We investigated the resistance of Ag-doped chalcogenide thin films varied in the applied voltage bias direction from about $1\;M{\Omega}$ to several hundreds of $\Omega$. As a result of these resistance change effects, it was found that these effects agreed with PMC-RAM. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from the chalcogenide materials.

  • PDF

A study on physical and chemical properties of chalcogenides for an aspheric lens (비구면 렌즈의 설계 및 제조를 위한 칼코게나이드계 유리의 물리적 화학적 특성 연구)

  • Ko, Jun-Bin;Kim, Jeong-Ho
    • Journal of The Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.388-393
    • /
    • 2010
  • In recent years the research has been focused on the preparation of special glasses, i.e., chalcogenide and heavy metal oxide ones that can transmit optical radiation above 2 um and also other optical parameters exceed those of silica based glasses. The attention in this paper is focused on chalcogenide glasses, on preparation of high quality base glass, for an application in infrared optical product design and manufacture. The amorphous materials of As-Se and Ge-As-Se chalcogenides were prepared by a standard melt-quenching technique. The compositions were mesaured by ICP-AES and EPMA, and structural and thermal properties were studied through various annealing processes. Several anomalies of glass transition and crystallization were observed in the DSC/DTA/TG results of the chalcogenide glass.

The Study on the Characteristic of Phase Transition in Differential Thickness of Se1Sb2Se2 Thin Films

  • Lee Jae-Min;Yang Sung-Jun;Shin Kyung;Chung Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.241-243
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can be controlled by electrical or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. In this letter, the characteristics of phase transition in differential chalcogenide thin film are investigated. Al was used for the electrode as the thickness of 100, 300, 500 nm, respectively.

The Study of Phase-change with Temperature and Electric field in Chalcogenide Thin Film

  • Yang, Sung-Jun;Shin, Kyung;Park, Jung-Il;Lee, Ki-Nam;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.24-27
    • /
    • 2003
  • We have been investigated phase-change with temperature and electric field in chalcogenide Ge$_2$Sb$_2$Te$\sub$5/ thin film. T$\sub$c/(crystallization temperature) is confirmed by measuring the resistance with the varying temperature on the hotplate. We have measured I-V characteristics with Ge$_2$Sb$_2$Te$\sub$5/ chalcogenide thin film. It is compared with I-V characteristics after impress the variable pulse. The pulse has variable height and duration.

The Properties of Photoinduced Birefringence in Chalcogenide Thin Films by the Electric Field Effects (전계효과에 의한 칼코게나이드 박막에서의 광유기 복굴절 특성)

  • 장선주;박종화;여철호;정홍배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.58-63
    • /
    • 2001
  • We have investigated the photoinduced birefrinence by the electric field effects in chalcogenide thin films. The electric field effects have investigated the various applied bias voltages(forward and reverse) in chalcogenide thin films. A pumping (inducing) and a probing bean were using a linearly polarized He-Ne laser light (633nm) and semiconductor laser light (780nm), respectively. The result was shown that the birefringence had a higher value in DC +2V than the others, Also, we obtained the birefringence in the electric field effects by various voltages. In addition, we have discussed the anisotropy property of chalcogenide thin films by the electric field effects.

  • PDF

Annealing Effect of the Chalcogenide Thin Film for Holographic Grating Formation (홀로그래픽 격자 형성에 대한 칼코게나이드 박막의 열처리 효과)

  • Park, Jung-Il;Shin, Kyung;Lee, Jung-Tae;Lee, Young-Jong;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.736-739
    • /
    • 2003
  • We prepared the chalcogenide As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35/, Se$\_$75/Ge$\_$25/ thin film. Holographic grating was formed by the He-Ne laser( λ =633 nm). Annealing at 100$^{\circ}C$ and 200$^{\circ}C$ has been used to change the optical property of chalcogenide thin films for holographic grating formation. As the results, large variation of the optical property was generated at the As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35/ chalcogenide film. Diffraction efficiency of the As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35/ film has been enhanced about three times