• Title/Summary/Keyword: Chalcogenide

Search Result 264, Processing Time 0.027 seconds

A Study on the Properties and Fabrication of Bulk Forming GeSe Based Chalcogenide Glass for Infrared Optical Lens (적외선 광학렌즈 제작을 위한 GeSe의 벌크 제작 및 특성 연구)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Park, Jung-Hoo;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.641-645
    • /
    • 2013
  • Chalcogenide glass has superior property of optical transmittance in the infrared region. Glass made using Ge-Se how many important optical applications. We have determined the composite formular of $Ge_{0.25}Se_{0.75}$ to be the GeSe chalcogenide glass composition appropriate for IR lenses. Also, the optical, thermal and physical characteristics of chalcogenide glass depended on the composition ratio. GeSe bulk sample is produced using the traditional melt-quenching method. The optical, structural, thermal and physical properties of the compound were measured by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), and Scanning electron microscope (SEM) respectively.

Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films (Tellurium계 상변화 칼코겐화물 박막의 광투과 특성)

  • Yoon, Hoi Jin;Bang, Ki Su;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.408-413
    • /
    • 2016
  • The dielectric thin films applied to multi-colored semitransparent thin film solar cells have been extensively studied. In this work, we prepared GeSbTe and GeTe chalcogenide thin films using magnetron sputtering, and investigated their optical and phase-change properties to replace the dielectric films. The changes of surface morphology, sheet resistance, and X-ray diffraction of the Te-based chalcogenide films support the fact that the amorphous stability of GeTe films is superior to that of GeSbTe films. While both amorphous GeSbTe and GeTe films thinner than 30 nm have optical transparency between 5% and 60%, GeTe films transmit more visible light than GeSbTe films. It is confirmed by computer simulation that the color of semitransparent silicon thin film solar cells can be adjusted with the addition of GeSbTe or GeTe films. Since it is possible to adjust the contrast of the solar cells by exploiting the phase-change property, the two kinds of chalcogenide films are anticipated to be used as an optical layer in semitransparent solar cells.

Material Properties of GeSbSe Chalcogenide Glass and Fabrication Process for 8~12 ㎛ IR Region Aspherical Optical Lens (GeSbSe계 기반 8~12 ㎛ 파장대역 적외선 광학 렌즈 제작 및 비구면 렌즈 가공기술 개발)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Han, Sang-Hyun;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • The chalcogenide glass has superior optical properties in IR region transmittances. We have determined the composition of GeSbSe chalcogenide glass for the application of good IR lenses, resulting in the composite rate of $Ge_{19}Sb_{23}Se_{58}$. The optical, structural, thermal and physical properties were measured by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), X-ray computed tomography (X-ray CT) respectively. The fabrication of the chalcogenide glass lens for infrared optics applications was proposed using a diamond turning machining technology which is known as the suitable ways for the production cost reduction and the accurate fabrication process control.

Some Peculiarities of Photo-structural Transformations in Amorphous Chalcogenide Glassy Semiconductor Films

  • Prikhodko, O.;Almasov, N.;Korobova, Natalya
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.587-590
    • /
    • 2011
  • The absence of deep traps for electrons in the spectrum of $As_{40}Se_{30}S_30$ localized states films obtained by ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous $As_{40}Se_{30}S_30$ films of chalcogenide glassy semiconductors, obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

Angle-resolved photoemission spectrscopy for chalcogenide and oxide heterostructures (칼코겐화물과 산화물 이종구조의 각도분해능 광전자분광 연구)

  • Chang, Young Jun
    • Vacuum Magazine
    • /
    • v.5 no.2
    • /
    • pp.10-17
    • /
    • 2018
  • Chalcogenide and oxide heterostructures have been studied as a next-generation electronic materials, due to their interesting electronic properties, such as direct bandgap semiconductor, ferroelectricity, ferromagnetism, superconductivity, charge-density waves, and metal-insulator transition, and their modification near heterointerfaces, so called, electronic reconstruction. An angle-resolved photoemission spectroscopy (ARPES) is a powerful technique to unveil such novel electronic phases in detail, especially combined with high quality thin film preparation methods, such as, molecular beam epitaxy and pulsed laser deposition. In this article, the recent ARPES results in chalcogenide and oxide thin films will be introduced.

Electrolyte Mechanizm Study of Amorphous Ge-Se Materials for Memory Application (메모리 응용을 위한 비정질 Ge-Se 재료의 전해질 메카니즘 연구)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.67-68
    • /
    • 2009
  • In this study, we studied the nature of thin films formed by photodoping chalcogenide materials with for use in programmable metallization cell devices, a type of ReRAM. We investigated the resistance of Ag-doped chalcogenide thin films varied in the applied voltage bias direction from about $1\;M{\Omega}$ to several hundreds of $\Omega$. As a result of these resistance change effects, it was found that these effects agreed with PMC-RAM. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from the chalcogenide materials.

  • PDF

The PMC fabrication using the amorphous chalcogenide materials (비정질 칼코게나이드 재료를 이용한 PMC소자 제작)

  • Chung, Hong-Bay;Huh, Jung-Hwa;Son, Jung-Woo;Park, In-Ae;Cho, Dong-Hwan;Kim, Sung-Jin;Nam, Ki-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1262_1263
    • /
    • 2009
  • Programmable Metallization Cell (PMC) is a memory device based on the electrolytical characteristic of chalcogenide materials. In this study, we investigate the nature of thin films formed by photo doping of Ag ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We were able to do more economical approach by using copper which play an electrolyte ions role. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from chalcogenide materials.

  • PDF

The Properties of Photoinduced Birefringence in Chalcogenide Thin Films by the Electric Field Effects (전계효과에 의한 칼코게나이드 박막에서의 광유기 복굴절 특성)

  • 장선주;박종화;여철호;정홍배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.58-63
    • /
    • 2001
  • We have investigated the photoinduced birefrinence by the electric field effects in chalcogenide thin films. The electric field effects have investigated the various applied bias voltages(forward and reverse) in chalcogenide thin films. A pumping (inducing) and a probing bean were using a linearly polarized He-Ne laser light (633nm) and semiconductor laser light (780nm), respectively. The result was shown that the birefringence had a higher value in DC +2V than the others, Also, we obtained the birefringence in the electric field effects by various voltages. In addition, we have discussed the anisotropy property of chalcogenide thin films by the electric field effects.

  • PDF

The Photoinduced Birefringence of Chalcogenide Thin Film by the Ag Polarized-photodoping (Ag 편광-광도핑에 의한 칼코게이나이드 박막의 광유기 복굴절)

  • 장선주;박종화;박정일;정홍배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.139-144
    • /
    • 2001
  • In this study, we have investigated the photoinduced birefringence of Ag plarized-photodoping in double-layer of Ag doped chalcognide thin films and dependence of polarization states in chalcogenide thin films. Also, we have investigated the polarization dependence of photoinduced birefringence and the anisotropy of absorption in an amorphous As$\sub$40/Ge$\sub$10/Se$\sub$15/S$\sub$35/ chalcogenide thin films using two 632.8nm He-Ne lasers, which have a smaller energy than the optical energy gap (E$\sub$OP/) of the film, i.e., an exposure of sub-bandgap light (hν$\sub$op/). The photoinduced phenomena of Ag polarized-photodooping increasing the linear dichroism(d), about 84% and birefringence(Δn), about 23%. It will offer lots of information for the photodoping mechanism and analysis of chalcogenide thin films.

  • PDF

Chalcogenide계 열전재료

  • Kim, Il-Ho
    • Electrical & Electronic Materials
    • /
    • v.24 no.7
    • /
    • pp.10-17
    • /
    • 2011
  • 현재 개발 중인 Chalcogenide계 열전재료 중에서, 이방성 재료인 Thallium chalcogenide, Alkalimetal bismuth chalcogenide, Bismuth telluride와 등방성 재료인 Lead telluride, Silver antimony telluride, TAGS, LAST 및 SALT를 소개하였고, 이 재료들에 대한 연구 동향을 살펴보았다. Chalcogenide는 S, Se, Te 및 다른 원소와의 다양한 조합에 의해, 넓은 온도범위에서 열전재료로 응용하기 위한 밴드갭 에너지의 조절이 가능하다. 또한 합성공정에 따른 상변태, 석출 등 구조변화에 따른 열전특성의 변화를 기대할 수 있어 열전재료 개발 초기부터 활발한 연구가 진행되어 왔다. 과거의 전통적인 Chalcogenide계 열전재료뿐만 아니라, Chalcogenide계 열전 신소재에 대해서도 살펴보았다. Chalcogenide는 전자적, 광학적, 열적 성질 등 특성이 독특하고 변화가 무궁무진하여 아주 매력적이기 때문에, 앞으로도 계속 열전재료로서 각광받는 물질군으로 판단된다. 그림 11에 현재까지 ZT의 최댓값이 1이 넘는다고 보고된 열전재료의 성능지수를 요약하였다.

  • PDF