• Title/Summary/Keyword: Chain topology

Search Result 58, Processing Time 0.025 seconds

A Hierarchical Model for Mobile Ad Hoc Network Performability Assessment

  • Zhang, Shuo;Huang, Ning;Sun, Xiaolei;Zhang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3602-3620
    • /
    • 2016
  • Dynamic topology is one of the main influence factors on network performability. However, it was always ignored by the traditional network performability assessment methods when analyzing large-scale mobile ad hoc networks (MANETs) because of the state explosion problem. In this paper, we address this problem from the perspective of complex network. A two-layer hierarchical modeling approach is proposed for MANETs performability assessment, which can take both the dynamic topology and multi-state nodes into consideration. The lower level is described by Markov reward chains (MRC) to capture the multiple states of the nodes. The upper level is modeled as a small-world network to capture the characteristic path length based on different mobility and propagation models. The hierarchical model can promote the MRC of nodes into a state matrix of the whole network, which can avoid the state explosion in large-scale networks assessment from the perspective of complex network. Through the contrast experiments with OPNET simulation based on specific cases, the method proposed in this paper shows satisfactory performance on accuracy and efficiency.

Clustering Routing Algorithms In Wireless Sensor Networks: An Overview

  • Liu, Xuxun;Shi, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1735-1755
    • /
    • 2012
  • Wireless sensor networks (WSNs) are becoming increasingly attractive for a variety of applications and have become a hot research area. Routing is a key technology in WSNs and can be coarsely divided into two categories: flat routing and hierarchical routing. In a flat topology, all nodes perform the same task and have the same functionality in the network. In contrast, nodes in a hierarchical topology perform different tasks in WSNs and are typically organized into lots of clusters according to specific requirements or metrics. Owing to a variety of advantages, clustering routing protocols are becoming an active branch of routing technology in WSNs. In this paper, we present an overview on clustering routing algorithms for WSNs with focus on differentiating them according to diverse cluster shapes. We outline the main advantages of clustering and discuss the classification of clustering routing protocols in WSNs. In particular, we systematically analyze the typical clustering routing protocols in WSNs and compare the different approaches based on various metrics. Finally, we conclude the paper with some open questions.

Analysis of Network Topology for Distributed Control System in Railroad Trains (철도차량용 분산형 제어시스템을 위한 네트워크 토폴로지 분석)

  • Hwang, Hwanwoong;Kim, Jungtai;Lee, Kang-Won;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.21-29
    • /
    • 2015
  • For higher reliability against component failures in railroad trains with many electronic sensors and actuators, a distributed control system with which all electronic components are connected via a network is being considered. This paper compares and analyzes various topologies of Ethernet network for a railroad train in the aspects of (1) failure recovery, (2) the number of ports per device, (3) the number of cable connections between vehicles, and (4) performance. Especially, the unique characteristic of a train system that the number of vehicles changes is considered through analysis. Various combinations of in- and inter-vehicle topologies are considered. In addition, we introduce a hybrid of star and daisy-chain topology for inter-vehicle connection when the maximum number of inter-vehicle connections is limited to reduce possible failures of inter-vehicle connections. Simulation results show performance comparison between different topology combinations; the hybrid topology is shown to enhance delay performance even with a highly limited number of inter-vehicle connections.

Analytical Study of the Impact of the Mobility Node on the Multi-channel MAC Coordination Scheme of the IEEE 1609.4 Standard

  • Perdana, Doan;Cheng, Ray-Guang;Sari, Riri Fitri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.61-77
    • /
    • 2017
  • The most challenging issues in the multi-channel MAC of the IEEE 1609.4 standard is how to handle the dynamic vehicular traffic condition with a high mobility, dynamic topology, and a trajectory change. Therefore, dynamic channel coordination schemes between CCH and SCH are required to provide the proper bandwidth for CCH/SCH intervals and to improve the quality of service (QoS). In this paper, we use a Markov model to optimize the interval based on the dynamic vehicular traffic condition with high mobility nodes in the multi-channel MAC of the IEEE 1609.4 standard. We evaluate the performance of the three-dimensional Markov chain based on the Poisson distribution for the node distribution and velocity. We also evaluate the additive white Gaussian noise (AWGN) effect for the multi-channel MAC coordination scheme of the IEEE 1609.4 standard. The result of simulation proves that the performance of the dynamic channel coordination scheme is affected by the high node mobility and the AWGN. In this research, we evaluate the model analytically for the average delay on CCHs and SCHs and also the saturated throughput on SCHs.

Design of a Coordinating Mechanism for Multi-Level Scheduling Systems in Supply Chain

  • Lee, Jung-Seung;Kim, Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.1
    • /
    • pp.37-46
    • /
    • 2012
  • The scheduling problem of large products like ships, airplanes, space shuttles, assembled constructions, and automobiles is very complex in nature. To reduce inherent computational complexity, we often design scheduling systems that the original problem is decomposed into small sub-problems, which are scheduled independently and integrated into the original one. Moreover, the steep growth of communication technology and logistics makes it possible to produce a lot of multi-nation corporation by which products are produced across more than one plant. Therefore vertical and lateral coordination among decomposed scheduling systems is necessary. In this research, we suggest an agent-based coordinating mechanism for multi-level scheduling systems in supply chain. For design of a general coordination mechanism, at first, we propose a grammar to define individual scheduling agents which are responsible to their own plants, and a meta-level coordination agent which is engaged to supervise individual scheduling agents. Second, we suggest scheduling agent communication protocols for each scheduling agent topology which is classified according to the system architecture, existence of coordinator, and direction of coordination. We also suggest a scheduling agent communication language which consists of three layers : Agent Communication Layer, Scheduling Coordination Layer, Industry-specific Layer. Finally, in order to improve the efficiency of communication among scheduling agents we suggest a rough capacity coordination model which supports to monitor participating agents and analyze the status of them. With this coordination mechanism, we can easily model coordination processes of multiple scheduling systems. In the future, we will apply this mechanism to shipbuilding domain and develop a prototype system which consists of a dock-scheduling agent, four assembly-plant-scheduling agents, and a meta-level coordination agent. A series of experiment using the real-world data will be performed to examine this mechanism.

Towards the Saturation Throughput Disparity of Flows in Directional CSMA/CA Networks: An Analytical Model

  • Fan, Jianrui;Zhao, Xinru;Wang, Wencan;Cai, Shengsuo;Zhang, Lijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1293-1316
    • /
    • 2021
  • Using directional antennas in wireless Ad hoc networks has many superiorities, including reducing interference, extending transmission range, and increasing space division multiplexing. However, directional transmission introduces two problems: deafness and directional hidden terminals problems. We observe that these problems result in saturation throughput disparity among the competing flows in directional CSMA/CA based Ad hoc networks and bring challenges for modeling the saturation throughput of the flows. In this article, we concentrate on how to model and analyze the saturation throughput disparity of different flows in directional CSMA/CA based Ad hoc networks. We first divide the collisions occurring in the transmission process into directional instantaneous collisions and directional persistent collisions. Then we propose a four-dimensional Markov chain to analyze the transmission state for a specific node. Our model has three different kinds of processes, namely back-off process, transmission process and freezing process. Each process contains a certain amount of continuous time slots which is defined as the basic time unit of the directional CSMA/CA protocols and the time length of each slot is fixed. We characterize the collision probabilities of the node by the one-step transition probability matrix in our Markov chain model. Accordingly, we can finally deduce the saturation throughput for each directional data stream and evaluate saturation throughput disparity for a given network topology. Finally, we verify the accuracy of our model by comparing the deviation of analytical results and simulation results.

Analysis and Comparison on Full Adder Block in Deep-Submicron Technology (미세공정상에서 전가산기의 해석 및 비교)

  • Lee, Woo-Gi;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.67-70
    • /
    • 2003
  • In this paper the main topologies of one-bit full adders, including the most interesting of those recently proposed, are analyzed and compared for speed, power consumption, and power-delay product. The comparison has been performed on circuits, optimized transistor dimension to minimize power-delay product. The investigation has been carried out with properly defined simulation runs on a Cadence environment using a 0.25-${\mu}m$ process, also including the parasitics derived from layout. Performance has been also compared for different supply voltage values. Thus design guidelines have been derived to select the most suitable topology for the design features required. This paper also proposes a novel figure of merit to realistically compare n-bit adders implemented as a chain of one-bit full adders. The results differ from those previously published both for the more realistic simulations carried out and the more appropriate figure of merit used. They show that, except for short chains of blocks or for cases where minimum power consumption is desired, topologies with only pass transistors or transmission gates are not attractive.

  • PDF

Polyethylene flow prediction with a differential multi-mode Pom-Pom model

  • Rutgers, R.P.G.;Clemeur, N.;Debbaut, B.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University, on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and carson (1998). We explore the predictive power of a differential multi-mode version of the porn-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (19c99), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.

Performance Evaluation of Multi-Hop Communication Based on a Mobile Multi-Robot System in a Subterranean Laneway

  • Liu, Qing-Ling;Oh, Duk-Hwan
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.471-482
    • /
    • 2012
  • For disaster exploration and surveillance application, this paper aims to present a novel application of a multi-robot agent based on WSN and to evaluate a multi-hop communication caused by the robotics correspondingly, which are used in the uncertain and unknown subterranean tunnel. A Primary-Scout Multi-Robot System (PS-MRS) was proposed. A chain topology in a subterranean environment was implemented using a trimmed ZigBee2006 protocol stack to build the multi-hop communication network. The ZigBee IC-CC2530 modular circuit was adapted by mounting it on the PS-MRS. A physical experiment based on the strategy of PS-MRS was used in this paper to evaluate the efficiency of multi-hop communication and to realize the delivery of data packets in an unknown and uncertain underground laboratory environment.

A Mechanism to improve the TCP performance in 802.11 Wireless Networks (802.11 무선 네트워크에서 TCP 성능 향상을 위한 기법)

  • Zhang, Fu-Quan;Kim, Jun-Hwan;Park, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.97-103
    • /
    • 2009
  • Improving TCP performance has long been the focus of many research efforts in 802.11 wireless networks study. Hop count and Round Trip Time (RTT) are the critical sources which serious affect the TCP performance on end to end connection. In this paper, we analytical derived the affection and based on the analysis we propose TCP should Change its Expected Value (TCP-CEV) when hop count and RTT change by setting a reasonable CWND change rate to improve the performance. The proposed scheme is applicable to a wide range of transport protocols using the basic TCP mechanism, and the protocol behavior is analytically tractable. We show that our simple strategy improves TCP performance at least over 12% in a chain topology, 4.9% in a grid topology and improve the TCP convergence.