• Title/Summary/Keyword: Chain Polymer

Search Result 760, Processing Time 0.024 seconds

Structure of a single polymer chain confined in a dense array of nanoposts

  • Joo, Heesun;Kim, Jun soo
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.48-52
    • /
    • 2015
  • Control of polymer conformations in heterogeneous confinement plays an important role in natural and engineering processes. We present a simulation study on the conformational structure and dynamics of a single, flexible polymer in a dense array of nanoposts with different sizes and separations, especially, when the volume of the interstitial space formed between four nanoposts is less than the size of the polymer chain. When a polymer is placed in the array of nanoposts, the size of polymer increases compared with that in the absence of nanoposts due to the confinement effect. It is shown that when a polymer is confined in the array of nanoposts the chain is elongated in the direction parallel to the nanoposts. As the interstitial volume between four nanoposts decreases either by increasing the nanopost diameter or by decreasing the separation between nanoposts, the chain elongation becomes more pronounced. On the contrary, the polymer size varies in a non-monotonic fashion, with an initial elongation followed by a chain contraction, as the interstitial volume is reduced both by increasing the nanopost diameter and decreasing the separation at the same time while keeping constant the width of the passageway between two nanoposts. The simulation analysis shows that the non-monotonic dependence of polymer size is determined by interplay between the chain alignment along the nanoposts in each interstitial volume and the chain spreading through passageways over several interstitial volume.

  • PDF

Molecular Dynamics Study of the Self-Diffusion Coefficient and Velocity Autocorrelation Function of a Polymer Molecule in Solution

  • Kang, Hong-Seok;Lee, Young-Seek;Ree, Tai-kyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.5
    • /
    • pp.223-227
    • /
    • 1983
  • A molecular dynamic computer experiment was performed on a system of 108 particles composed of a single polymer chain and solvent molecules. The state considered was in the immediate neighborhood of the triple point of the system. The polymer itself is an analog of a freely jointed chain. The Lennard-Jones potential was used to represent the interactions between all particles except for that between the chain elements forming a bond in the polymer chain, for which the interaction was expressed by a harmonic potential. The self-diffusion coefficient and velocity autocorrelation function (VACF) of a polymer were calculated at various chain lengths $N_p$, and various interaction strengths between solvent molecules and a polymer chain element. For self-diffusion coefficients D, the Einstein relation holds good; as chain length $N_p$ increases the D value decreases, and D also decreases as ${\varepsilon}_{cs}$ (the interaction parameter between the chain element and solvent molecules) increases. The relaxation time of velocity autocorrelation decreases as ${\varepsilon}_{cs}$ increases, and it is constant for various chain lengths. The diffusion coefficients in various conditions reveal that our systems are in a free draining limit as is well known from the behavior of low molecular weight polymers, this also agrees with the Kirkwood-Riesman theory.

Chain Transfer to Monomer and Polymer in the Radical Polymerization of Vinyl Neo-decanoate

  • Balic, Robert;Fellows, Christopher M.;Van Herk, Alex M.
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.325-335
    • /
    • 2004
  • Molecular weight distributions of poly(vinyl neo-decanoate) produced by the bulk polymerization of the monomer to low conversions were investigated to obtain values of the rate constants for the chain transfer to monomer ( $C_{M}$). The value of $C_{M}$ of 7.5($\pm$0.6)${\times}$10$^{-4}$ was obtained from a logarithmic plot of the number distribution at 5,25, and 5$0^{\circ}C$, which suggests that the activation energy for chain transfer is on the order of 20-25 kJ ㏖$^{-1}$ . These plots were linear between the number and weight-average degrees of polymerization, but not over the whole molecular weight range for which a significant signal was observed in the gel permeation chromatography (GPC) trace. Modeling suggests that the deviations observed at high molecular weights can be explained by branching of the chains through chain transfer to the polymer, with a branching density as low as 10$^{-5}$ , without affecting the slope at low values of the number of monomer unit, N. This deviation from the expected distribution of linear chains was used to estimate the branching densities at low conversion.ion.

Facile Synthesis and Characterization of Poly(dialkoxy-p-phenylene 1,3,4-oxadiazole-alt-phenylene 1,3,4-oxadiazole)s

  • Kim, Hoon-Seok;Kang, Soon-Min;Do, Jung-Yun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.360-366
    • /
    • 2008
  • Poly(dialkoxyphenylene 1,3,4-oxadiazole)s were conveniently synthesized to compare their material properties of solvent solubility, thermal stability and molecular alignment with respect to alkyl chain length and meta/para-phenylene structure. All prepared polymers exhibited good solubility in co-solvents containing various volume levels of chloroform to trifluoroacetic acid. Meta-polymers showed slightly better solubility than para-polymers. All polymers produced were thermally stable up to $320^{\circ}C$. Photoluminescence of polymer films was observed with blue light emission at around 450 nm. X-ray diffraction patterns of all polymers indicated that they were composed of stacked molecular sheets with the same layer-to-layer distance of $3.4\;{\AA}$. However, side chain-to-side chain and main chain-to-main distances within the layers increased with increasing alkyl chain lengths. The meta-polymer chains were separated more than the para-polymer chains.

Shifting Paradigms in Polymer Crystallization

  • Muthukumar, M.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.108-108
    • /
    • 2006
  • The role of conformational entropy of polymer chains in polymer crystallization is investigated by molecular modeling and theory. The entropy of folded loops dominates at experimentally relevant temperatures to dictate short equilibrium lamellar thicknesses, which are much smaller than the extended chain thickness. Also the entropic barriers control the kinetics of polymer crystallization. These results based on chain entropy are different from the classical views of how polymer chains crystallize.

  • PDF

Temperature Effect on the Configurational Properties of an n-Decane Chain in Solution

  • Oh, In-Joon;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.4
    • /
    • pp.162-167
    • /
    • 1984
  • Equilibrium and dynamical behaviors of an n-alkane poymer (decane) in solution have been investigated by a molecuar dynamics simulation method. The polymer is assumed to be a chain of elements $(CH_2)$ interconnected by bonds having a fixed bond length and bond angle, but esch bond of the polymer is allowed to execute hindered internal rotation. The calculation explicitly considers the molecular naturer of solvent by including the intermolecular interactions between slovent-solvent molecules and chain element-solvent molecule. We present the results of calculations on (1) equilibrium properties (the solvent molecule-chain element pair correlation function, chain element-chain element pair correlation function, the mean square end-to-end distance and the mean square radius of gyration of the polymer) and (2) dynamic properties (four different autocorrelation functions, namely, the autocorrelation functions for the end-to-end distance and the radius of gyration, and the velocity autocorrelation functions for the center of mass and the end point of the chain). We found that the physical properties of the polymer chain depends sensitively on temperature. Comparison of the present work with other authors' results is also presented.

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.

Developing Coarse-Grained Force Fields for Polystyrene with Different Chain Lengths from Atomistic Simulation

  • Rao, Shuling;Li, Xuejin;Liang, Haojun
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.610-616
    • /
    • 2007
  • We developed a coarse-grained force field and have extended it to polystyrene with longer chain length. A systematic method was introduced and was utilized to explain how the coarse-grained force field for polystyrene could be developed from the atomistic simulation in the paper. We elected to use polystyrene with different chain lengths of 20, 40 and 80 monomers in this study. In three cases, we utilized the same new mapping scheme. The coarse-grained force field does reproduce the bond, angle, and radial distribution of the atomistic model. The coarse-grained model proved successful, as shown by analyses of the static and dynamic properties of different chain lengths.

First Passage Time between Ends of a Polymer Chain

  • Sung, Jae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.3
    • /
    • pp.227-231
    • /
    • 2007
  • We improve Wilehemski-Fixmann theory for intrachain reaction dynamics of a polymer chain by taking into account excluded volume effects between reactive groups in the polymerchain. An approximate analytic expression for the intra-chain reaction dynamics is obtained for Gaussian chain model and compared to Brownian dynamics simulation results. The results of the present theory are in a better agreement to Brownian dynamics simulation results than those calculated by previously reported theories.

Molecular Dynamic Study of a Polymeric Solution (I). Chain-Length Effect

  • Lee Young Seek;Ree Taikyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.2
    • /
    • pp.44-49
    • /
    • 1982
  • Dynamic and equilibrium structures of a polymer chain immersed in solvent molecules have been investigated by a molecular dynamic method. The calculation employs the Lennard-Jones potential function to represent the interactions between two solvent molecules (SS) and between a constituent particle (monomer unit) of the polymer chain and a solvent molecule (CS) as well as between two non-nearest neighbor constituent particles of the polymer chain (CC), while the chemical bond for nearest neighbor constituent particles was chosen to follow a harmonic oscillator potential law. The correlation function for the SS, CS and CC pairs, the end-to-end distance square and the radius of gyration square were calculated by varying the chain length (= 5, 10, 15, 20). The computed end-to-end distance square and the radius of gyration square were found to be in a fairly good agreement with the corresponding results from the random-flight model. Unlike earlier works, the present simulation rsesult shows that the autocorrelation function of radius of gyration square decays slower than that of the end-to-end distance square.