• Title/Summary/Keyword: Chaetoceros

Search Result 161, Processing Time 0.023 seconds

Effects of Water Temperature, Salinity, Rearing Density and Food Supply on the Growth and Survival of the Surf Clam, Tresus keenae Larvae (수온, 염분, 사육밀도 및 먹이공급이 왕우럭(Tresus keenae) 유생의 성장과 생존에 미치는 영향)

  • Kang, Han Seung;Kim, Chul Won
    • Journal of Marine Life Science
    • /
    • v.3 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • This study was conducted to investigate the influence of environmental factors such as water temperature, salinity, rearing density and feeding amount on the survival and development of larvae in surf clam, Tresus keenae. As a result of this study, the optimum conditions of larval rearing were as follows. The optimum range of water temperature is 20℃ to 24℃, the optimum salinity is 30 psu, the optimum rearing density is 5 ind./ml and the supply of mixed feed organism for larva rearing such as Isochrysis galbana, Chaetoceros simplex and Tetraselmis suecica is 10×104 cells/ml. The results of this study suggest that the optimum conditions of environmental factors in larval rearing of Tresus keenae contribute to productivity improvement through rapid growth and high survival.

Seasonal Phytoplankton Growth and Distribution Pattern by Environmental Factor Changes in Inner and Outer Bay of Ulsan, Korea (울산만 내측과 외측에서 계절적 환경요인의 변화에 의한 식물플랑크톤 성장 및 분포)

  • LEE, MIN-JI;KIM, DONGSEON;KIM, YOUNG OK;SOHN, MOONHO;MOON, CHANG-HO;BAEK, SEUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.24-35
    • /
    • 2016
  • To assess the relationship between environmental factors and seasonal phytoplankton community structure, we investigated abiotic and biotic factors in Ulsan Bay, Korea. We divided the bay into two areas based on geographical characteristics and compared the difference in each factor between inner and outer bay with t-test statistics. As a result, temperature in the outer bay was higher than that of the inner bay during winter (t = -5.833, p < 0.01) and autumn (p > 0.05). However, opposite trend was observed during spring (t = 4.247, p < 0.01) and summer (t = 2.876, p < 0.05). Salinity was significantly lower in the inner bay than in the outer bay in winter, spring, and summer (p < 0.01). However, the salinity was not significantly different between the inner and the outer bay in the autumn (p > 0.05). In particular, high nutrient concentration was observed in most stations during winter season due to vertical well mixing. The nutrient concentration was significantly higher in surface layers of inner bay after rainfall, particularly in the summer. The relative contribution (approximately 70%) of < $20{\mu}m$ (nano and pico) size phytoplankton was increased in all seasons with continuously low nutrients from the offshore water due to their adaption to low nutrient without other large competitors. Interestingly, high population of Eutreptiella gymnastica was kept in the inner bay during the spring and summer associated with high DIN (nitrate+nitrite, ammonium) after river discharge following rainfall, suggesting that DIN supply might have triggered the increase of Eutreptiella gymnastica population. In addition, high density of freshwater species Oscillatoria sp. and Microcystis sp. were found in several stations of the inner bay that were provided with large amounts of freshwater from the Tae-wha River. Diatom and cryptophyta species were found to be dominant species in the autumn and winter. Of these, centric diatom Chaetoceros genus was occupied in the outer bay in the autumn. Cryptophyta species known as opportunistic micro-algae were found to have high biomass without competitors in the inner bay. Our results demonstrated that Ulsan Bay was strongly affected by freshwater from Tae-wha River during the rainy season and by the surface warm water current from the offshore of the bay during dry season. These two external factors might play important roles in regulating the seasonal phytoplankton community structures.

Spatio-temporal Distributions of Phytoplankton Community in the Coastal Waters of Gogunsan Islands(CoWGIs), West Sea of Korea (고군산군도 해역의 식물플랑크톤 군집의 시·공간적 분포 및 출현 환경특성)

  • Yoon, Yang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2287-2300
    • /
    • 2015
  • This study examined the spatio-temporal distributions of the phytoplankton community in the coastal waters of Gogunsan Islands (CoWGIs), West Sea of Korea, from January to September 2011. A total of 104 species of phytoplankton belonging to 56 genera were identified. This was low compared to the surrounding seas of the West Sea. In particular, diatoms and dinoflagellates comprised 60.5% and 34.6%, respectively, and it was most diverse in autumn. The standing crops fluctuated from $9.6{\times}10^4cells/L$ to $1.0{\times}10^7cells/L$. This was high in winter and summer and low in spring and autumn. The seasonal dominant species were Skeletonema costatum-like species, Thalassiosira nordenskioeldii, Dactyliosolen fragillisimus, and Chaetoceros debilis in winter, Guinardia delicatula in spring, Eucampia zodiacus, Cylindrotheca closterium, Ch. debilis, and Ch. curvisetus in summer, and S. costatum-like species, Ch. debilis, Ch. curvisetus, G. delicatula, and Leptocylindrus danicus in autumn. The total number of autochthonous and tychopelagic species was 39 species. This showed a 1/3 (33.3%) decrease compared to the 1980's. The chlorophyll a concentration fluctuated from $3.82{\mu}g/L$ in autumn to $13.36{\mu}g/L$ in summer. The bio-oceanographic characteristics of the CoWGIs based on principle component analysis (PCA) showed that it was dominated by the Saemangeum water mass in the high temperature season and by the Geum River water mass in the low temperature season. In other words, there has been a conversion to a closed inner bay followed by the dramatic progress of eutrophication, even in the CoWGIs after completion of the Saemangeum embankment.

The Effect of Enhanced Zooplankton on the Temporal Variation of Plankton in a Mesocosm (인위적인 동물플랑크톤 첨가에 따른 중형 폐쇄생태계 내 플랑크톤 변동)

  • Kang Jung-Hoon;Kim Woong-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.109-119
    • /
    • 2006
  • This study investigated the effect of artificially enhanced mesozooplankton on the phytoplankton dynamics during fall blooming period using a mesocosm in Jangmok bay located in the Southern Sea of Korea in 2001. The four bags with 2,500 liter seawater containment were directly filled with the ambient water. And then, abundances of mesozooplankton in two experimental bags were treated 6 times higher than those in control bags by towing with net($300{\mu}m$) through the ambient water. Phytoplankton community between control and experimental bags were not significantly different in terms of chlorophyll-a(chl-a) concentration and standing crop (one-way ANOVA, p>0.05) during the study period. Initial high standing crop and chl-a concentration of phytoplankton drastically decreased and remained low until the end of the experiment in all bags. Diatoms, accounting for most of the phytoplankton community, consisted of Skeletonema costatum, Pseudo-nitzschia seriata, Chaetoceros curvisetus, Ch. debilis, Cerataulina pelagica, Thalassiosira pacifica, Cylindrotheca closterium, and Leptocylindrus danicus. Noctiluca scintillans dominated the temporal variation of mesozooplankton abundances, which peaked on Day 10 in the control and experimental bags, while the next dominant copepods showed their peak on Day 7. Shortly after mesozooplankton addition, copepod abundance in the experimental bags was obviously higher than that in the control bags on Day 1, however, it became similar to that in the control bags during the remnant period. It was supported by the higher abundance and length of both ctenophores and hydromedusae in experimental bags relative to the control bags. However, the cascading trophic effect, commonly leading to re-increase of phytoplankton abundance, was not found in the experimental bags, indicating that copepods were not able to control the phytoplankton in the bags based on the low grazing rate of Acartia erythraea. Besides that, rapidly sunken diatoms in the absence of natural turbulence as well as N-limited condition likely contributed the no occurrence of re-increased phytoplankton in the experimental bags.

  • PDF

Short-term Variations in Community Structure of Phytoplankton and Heterotrophic Protozoa during the Early Fall Phytoplankton Blooms in the Coastal Water off Incheon, Korea (인천 연안의 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동)

  • Yang, Eun-Jin;Choi, Joong-Ki
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.101-112
    • /
    • 2007
  • In order to examine the short-term variations of phytoplankton and heterotrophic protozoa community structures with bloom events, water samples were collected every other day at one site in the coastal water off Incheon, Korea, from August 15-September 30, 2001. $Chlorophyll-{\alpha}$ concentrations varied widely from 1.8 to $19.3\;{\mu}g\;l^{-1}$ with the appearances of two major peaks of $Chlorophyll-{\alpha}$ concentration during the study period. Size-fractionated $Chlorophyll-{\alpha}$ concentration showed that net-size fraction ($>20\;{\mu}m$) comprised over 80% of total $Chlorophyll-{\alpha}$ during the first and second bloom periods, nano-size fraction ($3{\sim}20\;{\mu}m$) comprised average 42% during the pre- (before the first bloom) and post-bloom periods (after the second bloom), and pico- size fraction ($<3\;{\mu}m$) comprised over 50% during inter-bloom periods (i.e. between the first and second bloom periods). Dominant phytoplankton community was shifted from autotrophic nanoflagellates to diatom, diatom to picophytoplankton, picophytoplankton to diatom, and then diatom to autotrophic nanoflagellates, during the pre-, the first, the inter, the second, and the post-bloom periods, respectively. During the blooms, Chaetoceros pseudocrinitus and Eucampia zodiacus were dominant diatom species composed with more than 50% of total diatom. Carbon biomass of heterotrophic protozoa ranged from 8.2 to $117.8\;{\mu}gC\;l^{-1}$ and showed the highest biomass soon after the peak of the first and second blooms. The relative contribution of each group of the heterotrophic protozoa showed differences between the bloom period and other periods. Ciliates and HDF were dominant during the first and second bloom periods, with a contribution of more than 80% of the heterotrophic protozoan carbon biomass. Especially, different species of HDF, thecate and athecate HDF, were dominant during the first and the second bloom periods, respectively. Interestingly, Noctiluca scintillans appeared to be one of the key organisms to extinguish the first bloom. Therefore, our study suggests that heterotrophic protozoa could be a key player to control the phytoplankton community structure and biomass during the study period.

The Outbreak of Red Tides in the Coastal Waters off Kohung, Chonnam, Korea 2. The Temporal and Spatial Variations in the Phytoplanktonic Community in 1997 (전남 고흥 해역의 유해성 적조의 발생연구 2. 1997년도 식물플랑크톤의 시공간적 변화)

  • Jeong, Hae-Jin;Park, Jong-Kyu;Choi, Hyun-Yong;Yang, Jae-Sam;Shim, Jae-Hyung;Shin, Yoon-Keun;Yih, Won-Ho;Kim, Hyung-Sup;Cho, Kyung-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • We investigated the phytoplankton community from June to September 1997 in the waters off Kohung, Korea where red tides dominated by harmful dinoflagellates had occurred from August to September or October since 1995. We took water samples five times from 5 depths at 6 or less stations in this study period. The most dominant harmful dinoflagellate during the red tide which had outbroken on August 24, 1997 was Gyrodinium impudicum, not Cochlodinium polykrikoides. On August 21 just before the harmful red tide occurred the abundance of G. impudicum at the inner bay station, 90cells $ml^{-1}$, was higher than that at the outer bay station. However, on August 27 just after the red tide had outbroken, the abundance of G. impudicum at the inner bay station did not increase, whereas that at the outer bay increased rapidly and reached to the maximum of 30,000 cells $ml^{-1}$. Instead, diatoms such as Skeleltonema costatum, Chaetoceros pseudocurvisetus, Pseudonitzschia pungens rapidly increased at the inner bay station where fresh water from lands has reached. The high abundance of diatoms might have inhibited the growth of red tide dinoflagellates at this station. The transport of already formed red tide patches from offshore areas, aggregation of scattered cells driven by physical forces, and/or competition between diatom and dinoflagellates might be responsible for this appearance of dense red tide patches at the outer bay station.

  • PDF

The Outbreak, Maintenance, and Decline of the Red Tide Dominated by Cochlodinium polykrikoides in the Coastal Waters off Southern Korea from August to October, 2000 (2000년 여름 남해안에 나타난 Cochlodinium polykrikoides 우점 적조의 발생 특성)

  • Jung, Chang-Su;Lee, Chang-Kyu;Cho, Yong-Chul;Lee, Sam-Geun;Kim, Hak-Gyoon;Chung, Ik-Kyo;Lim, Wol-Ae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.68-77
    • /
    • 2002
  • We investigated the outbreak, maintenance, and decline of the red tide dominated by C. polykrikoides in the coastal waters off Southern Korea from August to October, 2000, by combining field data and NOAA satellite images. In general, the C. polykrikoides blooms, which have occured annually in Korean coastal waters from 1995 to 1999, initiate between late August and early September around Narodo Island and expand to the whole area of the southern coast. However, initiation and short-term change of the bloom of 2000 were quite different from the pattern observed previously. In mid-August, thermal fronts in sea surface temperature(SST) were formed: 1) between the Tsushima Warm Current Water (TWCW) and the Southern Korean Coastal Waters (SKCW), 2) between the jindo cold water mass and the southwestern coastal waters, and 3) between the upwelled cold waters in the southeast coast and the offshore warm waters. Free-living cells of C. polykrikoides were concentrated in these frontal regions. In late August, the thermal front TWCW-SKCW approached the mouth of Yeosuhae Bay where Seomjin River water and anthropogenic pollutants from the Industrial Complex of Gwangyang Bay are discharged. In the blooms of 2000 initiated in Yeosuhae Bay in late August, the dominant species, C. polykrikoides, co-occured with Alexandrum tamarense, Gymnodinium mikimotoi, Skeletonema coastatum, and Chaetoceros spp. Two typhoons, 'Prapiroon' and 'Saomai' during and the C. polykrikoides bloom probably affected the abundance of this species. After the former typhoon passed the Korean Peninsula, cell growth of C. polykrikoides was maximal, but after the latter typhoon, the C. polykrikoides bloom disappeared (20 September). On 5 October, the blooms dominated by C. polykrikoides broke out within the coastal waters of Jinhae Bay and Hansan-Keoje Bay. NOAA satellite images showed that the isothermal line of 22$^{\circ}C$ extended into Jinhae Bay. In this bloom, C. polykrikoides also occurred simultaneously with Akashiwo sanguinea(=Gym-nodinium sangunium), a common red tide-forming dinoflagellate species in fall and winter in these coastal bays.

Seasonal Changes of Species Composition and Standing Crop of Phytoplankton in the Ark Shell Scapharca broughtonii Farming Areas of Jinhae Bay (진해만 피조개 Scapharca broughtonii 양식장 식물플랑크톤의 종조성과 현존량의 월별변화)

  • Kim, Byoung-Hak;Min, Byeong-Hee;Choi, Nak-Joong;Oh, Bong-Se;Park, Ki-Yeol;Min, Kwang-Sik
    • Journal of Aquaculture
    • /
    • v.21 no.3
    • /
    • pp.157-166
    • /
    • 2008
  • Species composition and standing crop of phytoplankton were investigated in the ark shell Scapharca broughtonii farming areas from March, 2006 to February, 2007 in Jinhae Bay. Water temperature ranged from 7.56 to $25.90^{\circ}C$, salinity from 13.74 to 34.78 psu, dissolved oxygen from 4.13 to 13.20 mg/L, chlorophyll $\alpha$ from 2.77 to 104.98 $mg/m^2$ and pH from 7.83 to 8.65. Dominant species was Nitzschia and Rhizosolenia from March to May, Skeletonama costatum and Prorocentrum from June to August, Skeletonama costatum, Thalassiosira, Chaetoceros from September to November and Thalassiosira, Chaetoceros from December to February. Colonial diatoms were more dominant than the single cell diatoms. Standing crop was the highest in July at three stations. Standing crop of Skeletonama costatum was the highest as 1,760.0 cells/mL at St. 1, 1,075.2 cells/mL at St. 2 and 698.4 cells/mL at St. 3 in July.

Studies on the Environmental Characteristics of the Breeding Ground in the Kogum-sudo, Southern Part of Korean Peninsula I. Seasonal Succession of Phytoplankton Population (거금수도내 양식어장의 해양환경특성 I. 식물플랑크톤 군집의 계절변동)

  • Yoon Yang Ho;Koh Nam Pyo
    • Journal of Aquaculture
    • /
    • v.8 no.1
    • /
    • pp.47-58
    • /
    • 1995
  • Field studies on the seasonal succesion of phytoplankton population were carried out at the 25 stations of the breeding ground in Kogum-sudo, Southern coast of Korean peninsula in Feburuary, April, August and October, 1993. Sixty four species belonging to 40 genera were identified. Predominant species were mainly centric diatoms throughout the four seasons, two centric diatoms, Skeletonema costatum and Thalassiosira sp. and a pennate diatom, Thaiassionema nitzschioides in the winter; two pennate diatoms, Thaiassionema nitzschioides and Asterionella kariana, and especially a dinoflagellate, Heterocapsa triquetra (station 10) in the spring, two centric diatoms, S. costatum and Chaetoceros diadema in the summer; and a centric diatom, Rhizosolenia alata and a pennate diatom, Bacillaria paxillifer in the fall. The main red tide organisms in the breeding ground were dinoflagellates, Prorocentrum dentatum, P. minimum, P. triestinum, Ceratium furro, Gymnodinium sanguineum, Noctiluca scintillans, H. triquetra, Scrippsiella trichoidea and a diatom S. costatum in the Kogum Sudo. Seasonal phytoplankton cell numbers were in a wide range between $8.8\times10^3$ cells/l and 1.4\times10^6$ cells/l; The seasonal average cell numbers were $12.2\times10^4\pm5.9\times10^4$ cells/l $(mean\;\pm\;standard\; diviation)$ in the winter, $3.3\times10^4\pm1.4\times10^4$ cells/l in the spring, $48.4X10^4\pm40.0\pm10^4$ cells/l in the summer, and $3.6\times10^4\pm1.9\times10^4$ cells/l in the fall, respectively.

  • PDF

The Influences of Additional Nutrients on Phytoplankton Growth and Horizontal Phytoplankton Community Distribution during the Autumn Season in Gwangyang Bay, Korea (가을철 광양만 식물플랑크톤의 수평 분포와 추가 영양염 공급이 식물플랑크톤 성장에 미치는 영향)

  • Bae, Si Woo;Kim, Dongseon;Kim, Young Ok;Moon, Chang Ho;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • In order to estimate the effect of additional nutrients on phytoplankton growth and horizontal phytoplankton community distribution during the autumn season in 2010 and 2011, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas in Gwangyang Bay, Korea. Also, nutrient additional experiments were conducted to assess additional nutrient effects on phytoplankton assemblage using the surface water. In both years, the total nutrients were high at the enclosed inner bay and the mouth of Seomjin River, whereas it was low at the St.15~20 where in influenced by the surface warm water current from offshore of the bay. On the other hand, nano- and pico-sized Chl. a were gradually increased towards the outer bay and their trends were significant in 2011 than in 2010. The cryptophyta species occupied more than 85% of total phytoplankton assembleges in 2010, whereas their abundance in 2011 remainds to be 1/10 levels of 2010. Following the cryptophata species, the diatom Chaetoceros spp. and Skeletonema-like spp. were found to be dominant species. Further the biosaasy experimental results shows that the phytoplankton biomass in the +N and +NP treatments was higher compared to control and +P treatments and its trend was significant at St.8 and St.20 where nutrient concentration were low. Based on the bioassay and field survey, providing the high nutrients may have stimulated to phytoplankton growth such as S. costatum-like spp.. In particular, opportunistic micro-algae such as Cryptomonas spp. were able to achieve the high biomass under the relatively mid nutrient condition from bottom after break down of seasonal stratification in the Gwangyang Bay.